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1. Plane Waves (1)

Plane waves (homogeneous and sourceless region)

VXE =—jwB
VXVXE=—joVxB=w’ueE k=@ ue wavenumber
VxH=jwD “
VXVXE—-KE=0 V-E=0 sourceless VE+kE=0
ey What is the fundamental difference between wave and Laplace equations?
",,V,,*Twﬂﬂf plane wave 1s an eigenmode of wave equation
T’ Ay . (solution of Maxwell equation without excitations)
time — ' _j
E=E, exp(—jkz)e. ~_ E=E, Re|exp(jor)exp(—jkz)|e,
domain _ p _k
| o cos(ax —kz)e,
amplitude

propagation polarization The solution of wave
direction direction equation is oscillatory!

Ref: Xie, Sections 4.1 and 5.1 Wei SHA




1. Plane Waves (2)

VXE 1 OE,

VXE=—joB — H__jwﬂ_—jwﬂ = n:%: %
=Lk, wiexp(—jkz)ey = %exp(—ij)ey wave impedance
3 £ planar wt—kyz=C
? ‘ﬁz wavefront wavefront is defined by setting the
HA 27 >Z phase equal to a constant
y < Can wavefront be helical? y dz _w

w e (i)\ Helical beam P - E - k
W @ ~ phase velocity
" /,/ NJ N

Spiral Phase Plate

1. Amplitudes of fields on a given constant-phase plane are uniform.

2. In practice, most waves are spherical waves rather than plane waves. But if
the observation point is far from the source, it can be approximated as a
plane wave.

3. Gaussian beam from laser can be approximated as a plane wave.
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1. Plane Waves (3)

. dw dw
Propagating waves =V [V

®
time
E=F, k. = — a0 _
exp(—jkz)e, ——- domain E=F, cos(awt—kz)e, de :

» k

E=0 5|:EO eXp(_ij)exj| tlme
' - : ——~> E=E,cos(ax)cos(kz)e_
Standing waves +E exp(jkale, | qoain 0

= E, cos(kz)e,

1. Standing waves do not propagate EM energy with zero group velocity.
2. Standing waves relate to eigenmodes of EM resonances.

Mode shape m  n (oo c)

l ... . ) + 11 125 112
: T 11 1. L + - 12 200 141

<~ >4 nodalplane<—"
N ) -+ 1 3 325 1.80
/’J/ - £ 8 e ¥ 2 1 423 2.06

| —

. + - 22 500 2.24

node antinode -

Ref: Xie, Section 5.4 (group velocity); 6.1.1 and 6.1.2 (standing wave) WeiSHA




2. Polarization

The curve traced out by the tip of E at a fixed point in space as time t varies

Is there different polarization settings?

linearly polarized : locus is a straight line |
circularly polarized : locus 1s a circle * O O

elliptically polarized : locus is an ellipse

unpolarized : superposition of linearly polarized waves with random orientations (Sunlight).

right-circularly polarized
linear polarized

%%

y Electric field

A1TA
‘ ‘
.
.
,
/
/

\Il
1 Magnetic field

If looking at the source, electric vector coming
| toward you 1s rotating counterclockwise, the

wave is right-circularly polarized. If clockwise,
it 1s left-circularly polarized.
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3. Plane Waves in Multilayer Media (1)

Reflection and transmission of a plane wave at an interface

- 2
- H
E
€k
Region |

-+ X

Region 2 €2112

TE waves F =e, (2)e™  €,(2)=e,exp(jk.z)+ R e, exp(—jk,.2)

|4+ RTE — TTE RIE ok, — pk,,
E =L k., +uk
k k #2 1z /Lll 2z
H, =H,, /;Z (I_RTE) = ;Z " TTE _ 2k,
1 ? /’lzklz +lu1k2z
RIM _ &k, —&k,,
EZkIZ + glkZZ
TV _ 2&,k,.
€2klz + glk2z
Wei SHA

Ref: Chew, Waves and Fields in Inhomogeneous Media, Chapter 2.



3. Plane Waves in Multilayer Media (2)

1. If k, > k,, there exist values of &, such that k, > k_> k,, implying that k,_1s purely
imaginary, while k,_1s purely real. Hence, the magnitude of R, or R, equals 1. In
other words, all the energy of the incident wave is reflected. This phenomenon is
known as total internal reflection.

2. there exist values of k_ such that R, or R, equals zero. Then, the corresponding
angle for which the reflection coefficient equals zero 1s known as the Brewster angle.
Brewster angle effect 1s more prevalent for TM waves because most materials are
nonmagnetic.

3. The poles of the reflection coefficient relate to the dispersion relation of discrete
modes in the multilayer system. (For eigenvalue problem, we have the nonzero
reflection field with a zero incident field/excitation!)

TM wave &k, +&k, =0 &k —k> +&.Jk2—k* =0

€€,

k =k,

dispersion of surface plasmon!

Ref: Kasap, Second Ed. Section 1.5 and 1.6. Wei SHA




3. Plane Waves in Multilayer Media (3)

Reflection from a three-layer medium

4

Region | EXI/
z =-d

Region 2

Region 3
wave 1n region 1
€, = Alexp(jk,.z)+ 1}2 exp(—2 jk,.d, — jk,.z)]

generalized reflection coefficient

wave 1n region 2

e,, = A,[exp(jk,.z) + Ry; exp(-2 jk,.d, — jk,.z)]

y

wave In region 3

ey, = A, exp(jky.2)
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3. Plane Waves in Multilayer Media (4)

4

Region | \I/
z =-d

Region 2

Z =- dz
Region 3

1. Downgoing wave in region 2 1s a consequence of the transmission of downgoing
wave 1n region 1 plus a reflection of upgoing wave in region 2 (at interface of —d,)

A, exp(=jk,.d,) = A exp(=jk,.d\)T;, + Ry A, R,y exp(=2 jk,.d, + jk,.d,)

2. Upgoing wave 1n region 1 is caused by the reflection of downgoing wave in region 1
plus a transmission of upgoing wave in region 2 (at interface of —d1)

Aljélz exp(—jki,d,) = R, 4, exp(—jk,.d,) + T, A, R,; exp(=2 jk, .d, + jk, .d,)
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3. Plane Waves in Multilayer Media (5)

2ik mz d,) L.
* Riz  TeRaalpe ™ ikgld-d)) 1=-]
Region | \\/ /T ﬁzaﬂzuT
Region 2
: J Jik,,(d,-d,)
Region T2 Ti2Ra3 Tmzﬁzsﬁzl\ﬂzﬁzsﬁzse ez

.eik2z(dx-0)) |, o3ikyzldp-d))

l

N T, R T, exp| -2 jk,.(d, —d,)]
12 12 1—R21R23 eXp[_zijZ (d2 _dl)]

Rlz = Ry, +1),R,; T, exp [_2jk22 (d, — d1)]
+T12R223R21Tzl CXp [_4jk22 (d,—d, )] T
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3. Plane Waves in Multilayer Media (6)

. .

N layer ) x Bo_poa T,,R,.T,, exp [—2]k22 (d, — dl)]

Region | vt Ky € -4, 2 2 1 _ R21R23 eXp [_2.]k22 (dZ _ dl)]

Region 2 : : B2 <2 -4, l generalized

Region 3 K3 €3 -d ~

REW 3 R R ..+ z’i+1Ri+l’i+2];+l’i 6Xp[—2] i+1 Z(d’+1 d; ):l
N T N~ N — T T i+ — i i+ ~

Region N-I| I | KN -1 EN- -dy o 1 1- Ri+1,z'Ri+1,i+2 exp[—2] i+1 z(dl+1 d, )]

Region N ' KN EN

Recursive equation for generalized reflection coefficient

R, ,=—-R, I, =1+R, (See Slide 7)

~

P Rt R eXp': Kin . (diyy =4, )]
i’iH I+ Rz z+11’él+l Jit2 eXp|: 1+1 ,Z (d1+1 —d, ):I

=)

NN+ — 0
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3. Plane Waves in Multilayer Media (7)

Distributed Bragg reflector

Incident light
#

« 2

® © ©¢ © 0 O
PR
R=R+(1-R)Re™™ +(1-R)* Re™ ™ +. ..
- R

1=(1=R)e*/

when exp(-2jka)=1, generalized reflection coefficient
will equal to 1 due to constructive inference. Bragg
condition 1s a=A/2. Here we 1gnore the secondary
reflection/transmission. The above can be generalized to
1D multilayer media, 1.e.

n,d,+n,d,=\/2.

5 periods

Ref: Kasap, Second Ed. Page 56.
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3. Plane Waves in Multilayer Media (8)

More Interference Cases: Antireflection Coatings (solar cells) and
Fabry-Perot mode (lasers)

_ _ SR — R — ]/'2
Incident light P 7 Pl it
o) clative intensity
OO\ : < 3 . -
NN | U — R=038
\ . o
A % ' 5‘ R=04
e 11K
C i — ou,
N —— —
s
D<tf———— — : : : \
" - ‘ ‘ U -1 Vs Um + 1
Surface
Antireflection  Semiconductor or
coating photovoltaic device

ko(2L) =2x
k2(2d) -7 m(/\

—) =1L m=1,2,3,...

2
A. - Eca\'ity:A+B+~-'
d = m m=1,3,5,... = A + Ar?exp(—j2kL) + Artexp(—jdkL) + Ar®exp(—j6kL) + ...
4712
A
Ecavity T

I — rrexp(—j2kL)
Ref: Kasap, Second Ed. Section 1.7, 1.10, and 1.11. Wei SHA




4. Excitation Problem and Eigenvalue Problem (1)

Eigenvalue problem Excitation problem
V xV x Frn(r) — k2 Frn(r) =0 V x V x E(r) — k3E(r) = iwpJ(r)

How to connect excitation problem with eigenvalue problem?

eigenmode expansion E(r) =) a,Fn(r)

. .-l!I F* ,-Ir .Frﬂlr "| ='f:_'ln"|n
mode orthogonality [ drF7 (r)Fo (r)

Z A ”‘*ngn — 'I'*[i;ﬁlFm (r) = iwpd(r|

T

Frn.d)
. .
'ilm o 'E"Z]

Ay = WL
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4. Excitation Problem and Eigenvalue Problem (2)

To excite TE,, mode of rectangular waveguide
a. Probe is vertically oriented
b. Probe is located at the center of bottom side
Please give me a reason.

Incident Laser Beams

Why does laser illuminate s | ! "
at the THz antenna gap? —— 1

1. The above expression tells us if we want a certain mode to be strongly excited,
we need the inner product of the mode and current to be large. Hence, the current
on the probe should be located at where the field of the mode 1s strong. If the
probe 1s a short wire, it can be approximated by an electric dipole and its
polarization should be align to that of eigenmode.

2. If the operating frequency of the source is closed to the resonant frequency of the
mode, that mode will be strongly excited. This is the phenomenon of resonance
coupling. (waveguide here 1s not a resonator)
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5. Wave Physics (1)

plane waves l

three-layer media £, > &,

Region 1

&

,  Hertzian dipole

kﬁ +kZ =k’ Region 1 and 3
ki +kZ,=k; Region?2

Im(k
s ® ( p‘) k, transverse vector
Region 2.~ . : :
g guided-(surface) waves i |
ot 2 at Propagating/! Guided | Evenscaent
//' S s Leaky Wavcs! Waves i Waves

\ continuumi discrete !

Region 3 c modes E modes i Re(kp)

1 0000000—0——0— >

1

1. Why a plane wave from region I cannot excite guided wave propagating in region 2?7

Wavenumber of plane wave is smaller than propagation
constant of the guided wave (phase mismatch).

2. Why a Hertzian dipole from region 1 could excite guided waves?

Hertzian dipole with rich evanescent wave components could excite the

guided wave 1f it 1s near from the interface.

Slide 17/22
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5. Wave Physics (2)

Guided Mode

‘r

n; > n,

(a) TE mode
7 TEd 7] TEJ C‘Iddmng
> C e
-t. [ o N -==J- - 2a
optical fiber ~ \_\ ) // c ]
Fi, Cladding %
Jacket p 0= CkZ/ng, ® CkZ(n 1
Coating \°'° "":,_,IUI"._. ........ - --.:..;,a'.’:l; ------ - 5 -
WAk, k, = 0yHLE) 5
=%l [11
evanescent
mode guided mode 5 ’ g
(poles of generalized ref. coef.) E | q " evanescent
k= 0V = ~ mode
TE /| [T =@, E! it 8 ol swmnd omsoe
i — TMO, ODD
o 4o ====TMI, EVEN| i
J . leaky/radiation mode L e S — TEo,0pp [
i | 0 - w —=—TEI, EVEN
0 200 400 600 800 1600
Wavenumber {radian/m)
Wei SHA
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5. Wave Physics (3)

Period

1c Grating: We still have continuous translational symmetry in

the x d

irection, but now we have discrete translational symmetry in

the y G

irection

Floquet/Bloch mode phase matching condition

unit cell | I

zero-order
incident wave Odiffraction
lattice T, exp[i(ky +27m/ a)y] kot
=exp|i(k, +27m/ a)(y—1la) | X Lt ky
constant | |
= exp[z(ky +27m/ a)y]exp[—zkyla}
all of the modes with wave vectors of the
form k, + m(2x/a), where m 1s an integer, D=0
form a degenerate set; they all have the R i Yr

same eigenvalues of Ty

Ref: Kasap, Second Ed., Page. 80-84 Wei SHA



5. Wave Physics (4)

Application: augmented reality and diffractive waveguide (optional)

(a) 1D Pupil Expansion

AVAAWA Wa WA

—
Grating
period

Microprojector
l.l OPTOFIDEUTY Eye

(a) Single-layer Waveguide

(b) 2D Pupil Expansion with Turn Grating
//‘SN\ DIGIL_EMNSS

Output Grating

Picture Generation Unit
Generates Image Angular Content

[

Field of View
Maintained through

Waveguide

Incident light Reflected light
d p
/

'I_k:v

f
Transmission light / \\\
D1 DO D-1

slanted grating
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5. Wave Physics (5)

Particle scattering (Optional)

blue sky
Rayleigh partlcle
scattering size
from
Mie Scattering, small
small particle | NN to
large

Mie Scattering, NS A

large particle

sunset

Rayleigh scattering intensity ~ 1/A%
Mie scattering ~ strong forward scattering
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5. Wave Physics (6)

Application: enhanced outcoupling of OLED and Mie scattering (optional)

OLED with/without polymer- Mie resonance wavelength is
Zn0 extraction layer (PEL) tunable with particle size
Air n = 1.0)=_" 7 hAA
oo igis ~ e s Ya T
PEL(n~1.49) . _ 4t
Glass [n = 1.5) L o i
ITO (n~ 1.8 10 2.2) Without PEL I, .
Lo = 1.76) 3 Zn0 particle
- 1
Emitter (n = 1.72 ) 2 -
ETL(n=1.76) ‘ e | e
z 0k A= 52 !

L L il ' L
0 100 200 300 400 500 600 700

Particle Diameter (nm)

https://do1.org/10.1016/.0rgel.2021.106386

Slide 22/22 Wei SHA




