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Course Overview

1. Basic Concepts of Optoelectronic Chips

2. Optical Waveguides, Couplers, and Filters

3. Coupled Mode Theory and Electro-Optic Modulators
4. Design Methods

Ref:

Robert G. Hunsperger, Integrated Optics Theory and Technology, Sixth Edition, Springer
Wim Bogaerts, Introduction to Silicon Photonics Circuit Design
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1. Optoelectronic Integrated Circuits / Optoelectronic Chips

Integration of (many) optical functions on a chip
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2. Optical Waveguides (1)
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2. Optical Waveguides (2)

waveguide losses dominated by scattering.

interuniversity microelectronics
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2. Optical Waveguide Couplers (3)

transverse coupling/ endfire coupling
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Why guided waves can be excited?

phase matching condition!
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2. Optical Waveguide Couplers (4)

tapered coupler
n
n2

N3

impedance matching!

taper angle 1n the transition
region 1s sufficiently small to
prevent coupling of power from
the fundamental mode into the
higher order taper modes.

the minimum cross-sectional
dimensions of the taper not be so
small that the waveguide goes
below cutoff, unless it 1s desired
that optical energy be transferred
to another waveguide as in the
case of c.
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2. Filters

micro-ring resonator
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3. Coupled Mode Theory and Coupling between Waveguides
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E(x,y,2) = A@)€(x, y)— mode profile

coupled mode equation (same waveguides)

dAp(z) . .
dO; = —1BAp(z) —1kA(2)

dAy(z) . L ‘
d]"' - = _lﬁAl(:) — IKA()(A:)

boundary condition

Ap(O)=1 and A (0) =0,

solution
Ao(z) = cos(kz)e P2

A(z) = —isin(kz)e #?
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3. Electro-Optic Modulators (1)

Electro-optic effect is the change in index of refraction produced by the
application of an electric field. The effect is nonisotropic, and contains both linear
(Pockels effect) and nonlinear (Kerr effect) components. The nonlinear (quadratic)
Kerr electro-optic coefficient is relatively weak in commonly used waveguide
materials. Typically, Pockels effect 1s to be used.

If coordinates are align to principal dielectric axes of the crystal, the index ellipsoid
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3. Electro-Optic Modulators (2)

dual-channel waveguide electro-optic modulators

‘A ) sin*(gz) __,

; K- . W e
Piz)= — smz{g:;}e o

g

tunable directional coupler

coupled mode equation

d?(z) = —ifoAo(z) —ikA1(z) phase modulation

- A

dA,(2) AB = po — P
dl:' = —1f1A1(2) — 1k Ap(2)

complex amplitude

A ‘. , AB
Ao(2) = (cos 2z — i—'8 sin g::) exp [—i (ﬁo — —ﬂ) :}
| 2g 2

i , ., AB'
A(z) =— (?1 sin g::.) exp [—i (ﬁl + Tﬁ) :]

2 _ 2 AB\?
g =k +(T)

=

coupling is cancelled when

gL=m+mn, where m=0,1,2,....

Slide 11/17

Wei SHA



4. Design Methods (1)

design simulate =
function function design
function
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4. Design Methods (2)

Photonic integrated circuits (netlist or link analysis)
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(delay in MZI)
separate building
block
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How to connect all passive photonic components?

Scattering matrix ! It 1s linear coupling between all “ports’
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4. Design Methods (3)

Generalized scattering matrix: A review
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4. Design Methods (4)

Dense Wavelength Division Multiplexing (DWDM)
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4. Design Methods (5)

Active + Passive or Photonics + Electronics
still not well developed ...
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Simulating all in electrical simulator (SPICE with modified nodal analysis)
1. Use native and verified model for electronics
2. Build Verilog-A (behavior) model or circuit model for photonics
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4. Design Methods (6)

Verilog-A (behavior) model cases (simple)

ng-L)

single-mode waveguide  E,;(t) = e_(‘“ +if(wm)L Ein (t —
L

continuous-wave laser optical phase shifter

An(z,y) = —8.8 x 1072?AN,(z,y) — 8.5 x 107 BANP3(z, y)

t
Bn =B o7 + 271'/ Af-dr _
t P (¢0 0 / ) Aa(z,y) = 8.5 x 107 AN,.(z,y) + 6 x 107 BAN,(z,y)

waveguide coupler ao(v.x) = 2L (an(v) + &2 (7 - 1))

[gﬂ = [-3’% _fhﬂ“] [gz;] photodetector (Laplace transform)
waveguide splitter ipd = Liark + & 1 ‘flgf

[gjﬂ = L/a\(alhi,h)] Ein(t —ta) p: responsivity; T: optical response time
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