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Observing abnormally large group velocity
at the plasmonic band edge
via a universal eigenvalue analysis
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We developed a novel universal eigenvalue analysis for 2D arbitrary nanostructures comprising dispersive and lossy
materials. The complex dispersion relation (or complex Bloch band structure) of a metallic grating is rigorously
calculated by the proposed algorithm with the finite-difference implementation. The abnormally large group veloc-
ity is observed at a plasmonic band edge with a large attenuation constant. Interestingly, we found the abnormal
group velocity is caused by the leaky (radiation) loss, not by metallic absorption (ohmic) loss. The periodically
modulated surface of the grating significantly modifies the original dispersion relation of the semi-infinite dielec-
tric-metal structure and induces the extraordinarily large group velocity, which is different from the near-zero
group velocity at photonic band edge. The work is fundamentally important to the design of plasmonic nanostruc-

tures. © 2013 Optical Society of America
OCIS codes:

structures, nanostructures.
http://dx.doi.org/10.1364/0L.39.000158

For photonic crystals [1], forward and backward travel-
ing waves constructively interfere with each other,
resulting in standing waves. Due to Bragg scattering in
periodic photonic structures with modulated refractive
indices, the degenerate standing waves split into two
band edge modes with fields concentrated in different re-
gions. Between band edge frequencies, a bandgap occurs
due to destructive interference of traveling waves.
Although it is nonintuitive that the phenomena could
happen in metal structures, no physical law forbids their
existence. Unlike traveling waves in photonic crystals,
forward and backward surface plasmon (SP) waves
could also interfere with each other, leading to the for-
mation of a plasmonic bandgap (PBG) and plasmonic
band edge (PBE) [2]. They have broad applications in
nanophotonics such as thin-film solar cells [3], lasers
[4,5], surface-enhanced Raman scattering [6,7], and
directional nanoantennas [8].

The complex dispersion relation (or complex Bloch
band structure) of metallic nanostructures plays a funda-
mental role in understanding the PBE and PBG effects. In
the literature, the dispersion relation has been approxi-
mately generated by the frequency-angle diagram [6,9],
which is not accurate for highly lossy metal materials,
because the eigenvalue (Bloch wave number) corre-
sponding to the incident angle will be complex given a
real frequency. In this work, we developed a novel and
rigorous eigenvalue analysis for 2D arbitrary nanostruc-
tures with dispersive and lossy materials. Previously, the
complex band structure could be calculated by con-
verting the quadratic eigenvalue problem to a linear
one [10-12]. Here we borrow an idea from the quantum
transport problem [13] to overcome the drawback. First,
the proposed method can handle universal dispersive
and lossy media with experimentally tabulated complex
refractive indices. Second, the method can produce a
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linear eigenvalue equation and thus saves computer
resources in contrast to the quadratic eigenvalue one.
Third, it is easy to implement without the decomposition
of electromagnetic fields. Finally, the proposed method
can be employed to study the eigenvalue problem of
arbitrarily shaped plasmonic nanostructures, which
shows advantages over mode-matching approaches
[14-16] that have the numerical convergence issue.

Using the proposed eigenvalue algorithm, we observed
an abnormally large group velocity at the PBE of a 2D
metallic grating with 1D periodicity. The extraordinary
group velocity is distinguished from the near-zero group
velocity investigated both in photonic crystal structures
[1] and in other periodic plasmonic structures with
untouched or separated unit elements [2,5].

Figure 1(a) shows the schematic pattern of a squarely
modulated metallic grating. SP waves will be excited at
the crest and trough of the grating. The incident light is
p polarized and vertically impinges on the grating. The
complex refractive index of the metal (Ag) is expressed
by the Brendel-Bormann (B-B) model [17]. The mis-
matched momentum is provided by Floquet modes of
the periodic grating, which play an important role in
inducing the PBE. Figure 2(a) illustrates the optical ab-
sorption of the metallic grating. The middle absorption
peak is related to the PBG, while others are related to
PBEs. The weaker (middle) absorption peak by the
PBG is due to the coupling between the top and bottom
SP waves, as shown in Fig. 2(c). When the thickness of
the grating T increases, the middle absorption peak dis-
appears, and thus an absorption dip is formed by the PBG
[see Fig. 2(a)] where the reflectance has a high peak [see
Fig. 3(a)]. Figure 3(b) depicts the phase distribution of
the H, field at the PBG. We see a plasmonic standing
wave pattern corresponding to the second-order Floquet
mode. While the planar semi-infinite air-Ag structure
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Fig. 1. (a) Schematic pattern of a squarely modulated metallic
grating with the geometric parameters W = 410 nm,
P=820nm, H=30nm, and 7 =50 nm. The red ellipses
and yellow arrows denote the excited SPs and incident light,
respectively. (b), (¢) The normalized spatial overlap integrals
between the near-field profile of the grating and the mth
Floquet mode at 410 nm [Peak 1 of Fig. 2(a)] and 480 nm
[Peak 3 of Fig. 2(a)], respectively.

only supports one plasmonic resonance peak that is
significantly smaller than 400 nm, the two resonant peaks
of PBEs at 410 and 480 nm are obtained after introducing
the grating structure. Intuitively, the original dispersion
relation of the semi-infinite air-Ag structure is modified
by the periodically modulated surface (refractive indi-
ces) of the metallic grating.

To clarify the modified dispersion relation, we theo-
retically study the spatial overlap integral between the
near-field profile of the grating as shown in Figs. 2(b)
and 2(d) and the mth Floquet mode according to the
rigorous coupled-wave analysis [18], i.e.,
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Fig. 2. (a) Optical absorption of the metallic grating with a
varying thickness T, (b)—(d) H, field distributions of the met-
allic grating corresponding to the absorption peaks denoted by
arrows (7 = 50 nm).

January 1, 2014 / Vol. 39, No. 1/ OPTICS LETTERS 159
(a) (b)

Peak 2

—T=50 nm
——T=70 nm
---T=100 nm

400 420 440 460 480 500 200 400 600 800
Wavelength (nm) X (nm)

0.35

Fig. 3. (a) Reflectance of the metallic grating with a varying
thickness 7, (b) the phase distribution of H, field at the
PBG with respect to Peak 2 in Fig. 2(a).
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where P is the periodicity of the grating and y, is the
boundary between the grating crest and air. Moreover,
kg is the wavenumber in free space, § = 0 for the vertical
incidence case, and n = 0, £1, £2 are integers. From a
simple calculation (Re(ky) > 2z/P), we know the zeroth-
and first-order Floquet modes are radiative modes re-
lated to the incident wave, specular reflection, etc. They
are not responsible for the excitation of SPs. Further-
more, the overlap integral values become very small
when the diffraction order |n| > 3 [see Figs. 1(b) and
1(c)]. Remarkably, the overlap integral value with re-
spect to the third-order Floquet mode suddenly increases
at 410 nm when comparing Fig. 1(b) to Fig. 1(c). This
also can be observed from the near-field distributions,
as depicted in Figs. 2(b) and 2(d), where the H-field is
concentrated on the crest and trough of the grating, re-
spectively. The interplay of second- and third-order Flo-
quet modes not only enables a coupling of SPs to photon
energy but also perturbs the original dispersion relation
of SPs supported in the semi-infinite air—-Ag structure. A
proper momentum matching condition can be revised as

2
kg + Akigy = ko sin 0 + Fﬂn, 3)

where kg, = ko+/€pe,/ (€, + €), €9 and €, are permittiv-
ities of free space and metal, Akg, is the perturbed
momentum by the third-order Floquet mode, and n = 2
corresponds to the second-order Floquet mode.

Besides the overlap integral method, the eigenvalue
analysis is an efficient tool to characterize the PBE
and PBG. Take 1D periodicity for an example: the wave
equation can be discretized by using the finite-difference
method and Bloch theorem ¢(x + P) = ¢(x) exp(-jkgP),
ie.,

Dy T 0 TP\ (¢
T Dy T 0 b2

0 T Dy T b3
Te kP 0 T D44 ¢4
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where ¢ = [¢1; P P3; 4] is the eigenmode, D;; =
-2/A% + [k(@)?, T = 1/A% and A is the spatial step.
We define two new matrices H and @ as

Dy, T 0 O
| T Dy T O
H= 0 T Dy TY)
T 0 0 0 5)
00 o0 T
00 0 O
Q=- 00 0 O
0 0 T Dy
and use them to rewrite Eq. (4) as
Hgp = &"PQ¢. (6)

Because @ containing columns filled with zeros cannot
be inverted and H removing a diagonal element D, is
singular, we should modify Eq. (6) to generate a well-
conditioned linear eigenvalue problem:

Hep = " Qp + Q¢ - Q¢
(H - Q)¢ = (" - 1)Qg.

H-Q)'Qp = m@
Mp = . )

The matrix H — @ restores a standard finite-difference
matrix of the wave equation and therefore can always
be inverted. The above procedure can be easily extended
to calculate the dispersion relation of the 2D metallic
grating with 1D periodicity. The stretched-coordinate
perfectly matched layers [19] at the top and bottom boun-
daries are adopted to absorb outgoing waves reflected by
the metallic grating. At the left and right boundaries, the
same Bloch theorem is employed as for Eq. (4). It is
worth mentioning that the dispersion analysis of 2D
gratings is an unbounded problem, which is fundamen-
tally different from 2D periodic crystal structures with
bounded boundaries.

The most commonly used method [1] for calculating
dispersion curves is to choose the Bloch wave number
kg beforehand, and the frequency is then computed as
a function of the wavenumber, yielding the dispersion
curve w = w(kg). However, with this traditional method
it is difficult to calculate the dispersion curve for the
dispersive material. In this Letter, we fix the frequency
o and solve for the Bloch wave number as a function
of frequency, i.e., kg = kg(w). To benchmark the pro-
posed method, we compute the band diagram of a
periodic dielectric strip shielded with a perfect electric
conductor (PEC) plate. The methods agree with each
other very well, which can be seen in Fig. 4.

Next, we will investigate the complex Bloch band
structure of a 2D metallic grating as shown in Figs. 5
and 6. At the PBE (denoted by Peak 1), the original
dispersion relation of the semi-infinite air-Ag structure
is modified after the introduction of the periodically
modulated refractive indices, as illustrated in Fig. 5.

1t —ofixed k; method |
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Fig. 4. Band structure of a periodic dielectric strip shielded
with a PEC plate. The dielectric constant and the side length
of each strip are 4 and P/2, respectively.

Moreover, we find an extraordinarily large group velocity
at the PBE. From Fig. 6, a large attenuation coefficient is
found at the PBE corresponding to the large imaginary
part of the Bloch wavenumber. To unveil the physical
origin of the anomalous group velocity, we modify the
imaginary part of metal permittivity. Interestingly, the
negative and normal group velocity are observed for
the low and high metallic absorption (ohmic) loss,
respectively (see Fig. 5). Hence, the leaky (radiation) loss
leads to the extraordinary group velocity, while the
ohmic loss smooths the plasmonic band structure, losing
distinct features. The PBE, also called the PBG edge or
edge of PBG in the literature [8,20], is spectrally located
far from the PBG, in contrast to photonic band edge,
where the group velocity is almost zero. The interplay
of second-order and third-order Floquet modes in the
grating strongly perturbs the original dispersion relation
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Fig. 5. Band structure of the 2D metallic grating as a function
of the real part of the Bloch wavenumber. 1 is the incident wave-
length, and the rightmost vertical line denotes Re(kgp) = n/P.
The imaginary part of (physically real) metal permittivity
by the B-B model increases or decreases by a factor of 2 for
simulating the high or low ohmic loss, respectively.
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Fig. 6. Band structure of the 2D metallic grating as a function
of the imaginary part of the Bloch wavenumber. 4 is the incident
wavelength. The imaginary part of (physically real) metal per-
mittivity by the B-B model increases or decreases by a factor of
2 for simulating the high or low ohmic loss, respectively.

of the semi-infinite planar structure. The single modu-
lated surface of the grating not only induces PBEs
but also produces large leaky loss, which differs
from plasmonic Bragg waveguides [14], where optical
energy is confined between two modulated metal
interfaces.

The PBG at Peak 2 with a small attenuation coefficient
(see Fig. 6) is the result of two counteracting SP waves
with different group velocities (see Fig. 5). Compared to
PBEs with significant plasmonic hot spots at the grating
corners, the PBG has a weaker optical absorption, as de-
picted in Fig. 2(a). In other words, the PBG suppresses
the ohmic loss. The PBG is located at Re(kg) = 0, which
is the edge of the irreducible Brillouin zone, similar to
the photonic bandgap. It should be noted that the zero
PBG is caused by the symmetric property of metallic
gratings, and the PBG could open up in dual-interface
gratings [20].

This Letter proposed a novel universal eigenvalue sol-
ution to investigate the dispersion relation of a metallic
grating. The extraordinary group velocity at the PBE is
confirmed by our eigenvalue solver. The interaction be-
tween Floquet modes supported by the periodically
modulated surface induces the strong leaky loss and thus
the abnormally large group velocity. Both the developed
numerical algorithm and new findings with detailed
physical explanations are useful for designing plasmonic
nanostructures.
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