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A Parallel Block Preconditioner-Based VIE-FFT Algorithm for Modeling the

Electromagnetic Response From Nanostructures
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Abstract— The superior ability of nanostructures to manipulate light
has propelled extensive applications in nanoelectromagnetic components
and devices. Computational electromagnetics plays a critical role in
characterizing and optimizing the nanostructures. In this work, a parallel
block preconditioner-based volume integral equation (VIE)-fast Fourier
transform (FFT) algorithm is proposed to model the electromagnetic
response from representative nanostructures. The VIE using uniform
Cartesian grids is first built, and then the entire volumetric domain
is partitioned into geometric subdomains based on the regularity and
topology of the nanostructure. The block diagonal matrix is thus estab-
lished, whose inverse matrix serves as a preconditioner for the original
matrix equation. The resulting linear system is solved by the biconjugate
gradient-stabilized (BiCGSTAB) method with different residual error
tolerances in the inner and outer iteration processes and the FFT
algorithm is used to accelerate the matrix–vector product (MVM) opera-
tions throughout. Furthermore, because of the independence between
the inner processes of solving block matrix equations, the OpenMP
framework is employed to execute the parallel operations. Numerical
experiments indicate that the proposed method is effective and reduces
both the iteration number and the computational time significantly for
representative nanoelectromagnetic problems like the dielectric focusing
metasurfaces and the plasmonic solar cells.

Index Terms— Block preconditioner, fast Fourier transform (FFT),
nanostructures, OpenMP, volume integral equation (VIE).

I. INTRODUCTION

Nanostructures serve as the fundamental building blocks for nano-
electromagnetic designs and hold significant importance in emerging
engineering applications, such as virtual/augmented reality [1], met-
alens [2], organic solar cells (OSCs) [3], photonic integrated circuits
[4], and so on. Computational electromagnetics plays a vital role
in characterizing and optimizing nanostructures, effectively reducing
the costs and time associated with realistic experimental fabrication.
In particular, the accurate modeling of light–matter interaction within
nanostructures is essential. This modeling endeavor aims to propel
the exploration of novel physical effects and their corresponding
experimental investigation. Numerous research studies have been
conducted to address categories of nanostructure problems, such as
the planar plasmonic structures [5], complex disordered stacks of
gold nanorods or 3-D photonic crystals [6], the nonlinear optical
process of metal nanoparticles [7], and so on. In this work, the
focusing metasurfaces and the plasmonic solar cells are chosen as
representative examples, which possess commonly used structural
features that display far-field interference and near-field coupling
effects, respectively.
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Considering the dimensions and material composition of nanos-
tructures, there are three kinds of popular rigorous methods including
the differential equation (DE)-based methods, the integral equation
(IE)-based methods, and the semianalytical methods. The semianalyt-
ical methods can only solve the electromagnetic response for specific
nanostructures. The DE methods involving the finite-difference time-
domain (FDTD) method [8], the finite-difference frequency-domain
(FDFD) method [9], and the finite-element method (FEM) [10]
discretize the whole region, resulting in a large number of unknowns
to be solved. Moreover, the accuracy of modeling high-contrast
plasmonic structures with strong evanescent wave coupling is reduced
due to the dispersion error in both the FEM and the FDTD method,
as well as the staircase approximation used in the FDTD method
[11]. Differently, the IE methods only need to discretize the object.
Not only is the number of unknowns small, but also the radiation
boundary condition can be satisfied automatically by using the dyadic
Green’s function. They usually have higher accuracy. Because nanos-
tructures often exhibit complex and intricate geometries including
sharp edges, corners, fine details, and so on, some of which involve
open surfaces, the IE methods are the superior option compared with
the DE methods. The IE methods are classified into the surface
IE (SIE) method [12] and the volume IE (VIE) method [13]. For
the metallic, homogeneous dielectric, and composite metallic and
dielectric objects, the SIE is preferred to be established at the surface
of the nanostructure [14], but the precorrected-fast Fourier transform
(FFT) algorithm [15] is required for the near-field calculations.
In comparison, the VIE in conjunction with the method of moments
(MoMs) [16] is an easy-to-implement and flexible method to calculate
the electromagnetic scattering from dielectric bodies of arbitrary
shape and inhomogeneous material composition [17]. Although for
some scattering structures, the impedance matrix can be poorly
conditioned and the conventional MoM suffers from tremendously
high computational cost and memory requirement, efficient iterative
and fast algorithms have alleviated this problem to some extent.

In recent years, many efforts have been made to apply various iter-
ative and fast algorithms to reduce the complexity and memory cost
of the MoM solution. The commonly used iterative approach to solve
the VIE is the biconjugate gradient-stabilized (BiCGSTAB) method
[18] from the Krylov subspace family. The Krylov methods require
the computation of some matrix–vector product (MVM) operations
at each iteration, which accounts for the major computational cost of
this class of methods. However, by performing the MVM with the
3-D FFT [19], the computational complexity and the memory use
are reduced to O(N log N ) and O(N ), respectively. Normally, the
FFT algorithm requires the volume of the object to be discretized
into uniform hexahedral cells to use the Toeplitz property of the
impedance matrix, which results in a large number of unknowns
for an accurate geometric model with the staircase approximation.
However, near-field calculation without precorrection can save a great
amount of computer resources, especially for nanoelectromagnetic
problems involving strong near-field interactions that cover a large
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range. There is another problem that the typical MoM implemen-
tations for dielectric bodies do not consider the induced currents
flowing between the dielectric volumes and the free space, which
has been discussed in [20]. However, this work primarily focused
on capturing the field interaction effect of unit cells, manipulating
an efficient preconditioner, and conducting further studies on the
accuracy and efficiency of the proposed preconditioned solver. More
extensions of this problem will be made in our future work.

To accelerate the convergence rate of the Krylov method,
substantial efforts have been devoted to the development of straight-
forward preconditioners. The commonly adopted preconditioning
tools include the incomplete LU factorization [21] and the symmetric
successive overrelaxation (SSOR) [22], both of which are difficult
to implement in parallel. Therefore, we propose a combination of
parallel computing techniques and an efficient block preconditioning
method inspired by the rank-revealing decomposition preconditioner
[23], which is well-suited for the organized unit nanostructures. Based
on the fact that the spectral properties of the impedance matrix are
mainly determined by the near-field dependence of the IE kernel
especially for nanoelectromagnetic applications [24], the entire volu-
metric domain is partitioned into some geometric subdomains. As a
result, a block diagonal matrix resulting from the local geometries
of near-field interactions is established to serve as an approximation
of the original impedance matrix. The inversion of the approximate
matrix is referred to as a preconditioner, and the process requires
solving the block matrix equations simultaneously. Therefore, the
BiCGSTAB-FFT method is once again adopted to solve the submatrix
equations in the inner iterations, combined with the OpenMP parallel
technique for loops in the outer iterations.

In this communication, the theory of the preconditioned VIE-FFT
algorithm is described in Section II. In Section III, two commonly
encountered regular nanostructures are provided to demonstrate the
correctness and efficiency of the proposed method. Finally, the
conclusion is given in Section IV.

II. THEORY

A. VIE-MoM

Here, we consider an inhomogeneous 3-D nanostructure
illuminated by a plane wave at a specific frequency of interest. Es

is the corresponding scattered field due to the induced volumetric
polarization current Js as follows [25]:
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where g(r, r ′) = e− jk|r−r ′|/4π |r − r ′| denotes the scalar Green’s
function in free space,

←→
G denotes the corresponding dyadic Green’s

function, and r and r ′ are the observation and source point locations,
respectively. The permittivity and permeability in free space are
denoted by ε0 and µ0, respectively.

According to the relation between the polarization current and the
electric polarization vector, the total electric field could be described
by Js as

Etot
=

Js(r)

jω (ε − ε0)
. (2)

The total electric field is the summation of the incident field and
the scattered field, and thus the VIE can be written as

Etot
= Einc

+ Es . (3)

Based on the equations above, one can explicitly write the equation
with the unknown Js as

Js(r)
jω (ε − ε0)

+ jωµ0

∫
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)
· Js (

r ′
)

dv′ = Einc. (4)

Here, the MoM is used to discretize the equation. The unknown
volumetric currents can be expanded into sets of basis functions, and
then the problem is converted to minimize the associated residual
errors with sets of weighting or testing functions [26]. Considering
our examples have regular geometries that allow low cost and easy
fabrication, a hexahedron mesh is utilized to discretize the volumetric
structure, enabling fast MVM and efficient preconditioning. The
unknown currents are expanded into rooftop basis functions

Js
=

3∑
i=1

pi

N1∑
k=0

N2∑
m=0

N3∑
n=0

J D
i (kmn)T s

kmn . (5)

pi are the direction vectors, J D
i are the coefficients of current

basis functions, and T s
kmn are the volumetric rooftop functions.

Then, the pulse function is applied to test the equation. Considering
the Cartesian coordinate system, all three polarization x-, y-, and
z-components of the unknown currents are taken into account. The
above equation can be transformed into the matrix equation Lxx Lxy Lxz

L yx L yy L yz
Lzx Lzy Lzz


︸ ︷︷ ︸

A

 J s
x

J s
y

J s
z


︸ ︷︷ ︸

x

=

 E inc
x

E inc
y

E inc
z


︸ ︷︷ ︸

b

(6)

where

L i j =

{
Lc

ii + Lq
ii , for i = j

Lq
i j , for i ̸= j

(7)

Lc
ii J s

i and Lq
i j J s

i are defined as

Lc
ii J s

i =
J s
i (r)

jω (ε − ε0)
− jωµ0

∫
v

J s
i

(
r ′

)
g

(
r, r ′

)
dv′ (8)

Lq
i j J s

i =
1

jωε0

∂

∂ui

∫
v

∂ J s
j
(
r ′

)
∂u′j

g
(
r, r ′

)
dv′. (9)

B. Preconditioned Iterative Solver

Discretizing the VIE with MoM, a dense impedance matrix A
will be generated as shown in (6). Considering the symmetry of the
linear system, some algorithms like the GMRES [27], the CGS [28],
and the BiCGSTAB are all applicable, which have low memory cost
and good convergence properties as well. Besides, they are easy to
combine with a preconditioner. In this work, the BiCGSTAB method
is employed as a proof of principle, which shows good performances
combined with the parallel block preconditioner. The formulation
is equivalent to applying the BiCGSTAB method to the explicitly
preconditioned system: Ãx̃ = b̃, where Ã = K−1

1 AK−1
2 , x̃ = K 2x,

and b̃ = K−1
1 b. We consider a right preconditioner, which means that

K 1 is the unit matrix, and K 2 is an approximation of the impedance
matrix A. In the outer iteration process, two extra matrix equations
y = K−1

2 pi and z = K−1
2 s need to be solved, where y, pi , z,

and s correspond to the vectors involved in this process. To reduce
computational complexity, we explore the structure for constructing
the block preconditioners, that is to say, K 2x = b (representing the
two extra equations above) could be approximately viewed as solving
the combination of matrix equations of divided blocks, for example,
A1x = b1, A2x = b2, and so on. Since the interaction between
blocks is not considered, only the diagonal of the large matrix has
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nonzero values. The extra matrix equation to be solved is given as
follows: 

A1, 0, . . .

0, A2, . . .

. . . . . . . . .

0, . . . , AN




J1
J2
...

J N

 =


b1
b2
...

bN

 . (10)

In view of the vector current and the interaction of currents along
the three directions, matrices including coefficients of the interactive
x-, y-, and z-components are established. Here is an example of the
impedance matrix for a divided block

A1 =



A1×1x , . . . , A1xnx , A1×1y , . . . , A1×1z, . . .

...
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A1y1x , . . . , A1ynx , A1y1y , . . . , A1y1z, . . .

...
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A1z1x , . . . , A1znx , A1z1y , . . . , A1z1z, . . .

...

Anz1x , . . . , Anznx , Anz1y , . . . , Anz1z, . . .



.

(11)

The coefficients of x-components in the dotted box correspond
to the operator Lxx in (6), which represent the contribution of the
currents of x-components to the electric fields of x-components,
likewise for the y- and z-components. For a divided block, solving
the submatrix equation is an inner iteration process, which also
uses the BiCGSTAB-FFT method. Because only the approximate
inverse of matrix A needs to be considered, the submatrix equation
in (10) can be solved with a larger residual error, that is, the
stopping criteria of iteration can be softened. After retaining the
newly solved current vector of the corresponding block, all currents
are arranged into a new vector to continue the outer iteration process.
Notably, since the interaction between blocks is not considered, data
exchange between different blocks is not necessary, which is ideal for
parallel computing. The OpenMP parallelization paradigm provides
a multithread capacity and fully makes use of the features of shared
memory [29], which executes multiple threads for loops of solving
block matrix equations. In general, the number of threads is often
comparable to the number of divided blocks. It is clear that if
there are more blocks to be divided, the time to solve the matrix
equation for each block will be shortened. Nevertheless, the use of
smaller-sized diagonal block matrices leads to a poorer approximation
of the matrix A, thus hindering the efficiency of the outer iteration
process. Evidently, the division of blocks significantly influences the
efficiency of the outer iteration, resulting in a tradeoff between the
time required for the solution of submatrix equations in one iteration
and the number of outer iteration steps.

III. NUMERICAL RESULTS

In this section, some numerical results are shown to illustrate the
effectiveness of the VIE-FFT algorithm with the preconditioner. First,
to verify the accuracy of the algorithm precisely, we consider the
scattering of a dielectric sphere and a metallic sphere with the radius
of r = 400 nm (5 832 000 unknowns at 750 THz). The relative
permittivity of the dielectric material is 2.25 corresponding to the
refractive index of n = 1.5. The complex permittivity of the metallic

Fig. 1. Bistatic RCS of a dielectric sphere with the radius of r = 400 nm
at 750 THz (ϵr = 2.25).

Fig. 2. Bistatic RCS of a metallic sphere with the radius of r = 400 nm
at 750 THz (ϵr = −1.05 − j5.62).

material is ϵr = −1.05 − j5.62. The comparison to the Mie series
solution [30] is made for the radar cross section (RCS) of the sphere
as plotted in Figs. 1 and 2. The relative L2-norm errors of the E-plane
RCS are 2.5% and 3.75%, respectively. It can be found that there is
an excellent agreement between them.

Next, we investigate the performance of the preconditioned
algorithm for modeling the electromagnetic response from two exam-
ples of nanostructures, which are performed with an IBM server
of 256 GB memory.

A. Focusing Dielectric Metasurfaces

The electromagnetic metasurface is a useful structure to control
beam propagation by phase tailoring. To reduce the loss at optical
frequencies and increase the feasibility of fabrication, extensive
studies have been conducted on the dielectric-only metasurfaces.
Here, the resonating disk as a unit cell is made of silicon with the
permittivity of ϵr = 12.25, placed onto a substrate of ϵr = 2.25.
The thicknesses of Si and SiO2 are 250 and 25 nm, respectively. The
schematic of the cylinder is displayed in Fig. 3(a). Then, we study
the transmission phase of the disk as a function of radius, where the
working frequency is fixed at 214 THz. As shown in Fig. 3(b), the
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Fig. 3. Change of transmission phase with variation of cylinder’s radius.
(a) Schematic of single Si cylinder with substrate of SiO2: H = 250 nm,
h = 25 nm. (b) Diagram of phase change.

complete 360◦ transmission phase is covered while the radius ranges
from 160 to 400 nm. According to the phase profile settings

8(x, y) = kSiO2

(√
x2 + y2 + d2 − d

)
(12)

where kSiO2 is the wavenumber in the dielectric, x and y are the
coordinate positions of the units on the plane, d is the focal length,
and the size of the unit cell is 900 nm. A metasurface for plane-wave
focusing could be designed by arranging the disks of different sizes
at a fixed focal length. The structure is designed to length × width ×
height as 16λ0 × 16λ0 × 0.2λ0 (λ0 is the wavelength of free
space) and creating 47 grids per λ0 (considering high dielectric
contrast), incident wave is polarized along the x-direction, and the
focal length d is set to 10λ, that is, 14 µm. So, the total number
of mesh elements is 6 187 500 and that of unknown currents along
the three dimensions is 18 562 500. Nearly 6 GB of memory cost is
required. To employ the parallel block preconditioner, we divide the
structure evenly into blocks based on its regularity of arrangements.
The residual error of the outer iteration is set to 0.001, whereas the
inner residual error for the stopping criteria of preconditioning is
0.01. In Fig. 4, the distribution of the electric-field amplitude in the
x–z propagation plane is shown, along with the results simulated by
the commercial software CST. The performance of convergence is
also displayed. A relatively small number of iterations are needed
for the proposed method, whereas the original un-preconditioned
VIE-FFT algorithm fails to converge to ϵ = 10−3 within
1000 iterations. To validate the accuracy of results quantitatively,
the normalized electric-field amplitude of the vertical cut of the
focusing spot size at x = 0 is compared in Fig. 5. We can see
that the field results from the VIE method and the FDTD method
of CST are in good agreement. They produce the accurate focusing
position at 14 µm as the theoretical design, whereas the focusing
position calculated by the FEM of CST slightly shifts. In addition,
the electric-field amplitude calculated by CST shows instability near
the focusing position, which might contribute to the error to some
extent. Therefore, the convergence property is studied to re-examine
the reliability of the proposed method. The structure is discretized
with different cell sizes (12.5, 25, and 50 nm, 1x = 1y = 1z).
As the grid size decreases from 50 to 12.5 nm, equivalently, the
number of grids increases from 1 215 000 to 71 280 000. We take the
results simulated by the FDTD method of CST with a finer grid as
the reference, then compute corresponding relative L2-norm errors as
depicted in Fig. 6. It can be observed that the error becomes smaller
as the grid size decreases, which demonstrates the stability and accu-
racy of the method. Evidently, sufficient mesh cells are required for
good convergence. Furthermore, Table I shows the total calculation
time of different methods. We can see that compared to the FDTD
method, the FEM and the unpreconditioned VIE method are slower.

Fig. 4. Residual error versus iteration number for the metasurface. The
inset shows the simulated intensity profiles by the preconditioned VIE-FFT
algorithm and CST software.

Fig. 5. Normalized electric-field amplitude of the vertical cut of the focusing
spot size at x = 0 by the proposed algorithm and CST software. The focal
plane of the metasurface is designed to be d = 14 µm.

TABLE I
COMPUTATIONAL STATISTICS OF METASURFACE WITH THE

RESIDUAL ERROR ϵ = 10−3

After introducing the preconditioner, the overall CPU time is roughly
reduced to one-third of the unpreconditioned one. Compared with
the CST, the proposed preconditioned method shows a substantial
speedup. We have also tried alternative ways of divisions and find
that there is no significant difference in the CPU time except for the
slight speed improvement brought by the finer division of blocks,
which would be attributed to the electric and magnetic resonance
modes dominated by the strong dipole moment located in the center
of the nanopillar [31]. The field information contained in each block
is rich enough to represent the characterization of the whole matrix.

B. Plasmonic Solar Cells

The OSCs are promising for future green energy applications.
Considering the low carrier mobility and the short exciton diffusion
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Fig. 6. Convergence of the preconditioned VIE-FFT algorithm: the relative
L2-norm errors with different cell sizes (12.5, 25, and 50 nm). The solution
of the FDTD method of CST is taken as the numerical reference.

Fig. 7. Schematic of plasmonic solar cells with uniform blocks.

length, metallic nanoparticles are embedded into OSCs for enhancing
the optical absorption on the basis of local plasmon resonance [32].
As displayed in Fig. 7, eight identical gold nanoparticles (ϵr =
−8.45 − j1.41) are incorporated into a silicon spacer, which is
illuminated by an x-polarized wave along the z-axis at 500 THz. The
diameter of the nanoparticle is D = 60 nm, and the particle–particle
spacing is L = 20 nm. The thicknesses of the spacer (silicon) and
the organic active layer (P3HT:PCBM) are H1 = 80 nm and H2 =
120 nm, respectively. Different from the dielectric metasurface, strong
near-field evanescent wave coupling exists between the nanoparticles,
which significantly slows down the iteration process. Here, we study
the performances of the preconditioner under the two cases of vertical
incidence and oblique incidence with different ways of division.
The results are shown in Table II. To realize parallelization, the
whole structure is divided into different longitudinal sections based on
the regularity and topology. Considering the high dielectric contrast
between the organic layer and the spacer, division along the interface
of media is also studied. The inner residual error for the stopping
criteria of preconditioning is set to 0.03. The residual error of iteration
and the distribution of the electric field are displayed in Fig. 8, and a
strong plasmon coupling between nanoparticles is clearly observed.
The inset shows the near-field distribution for: 1) vertical incidence
and 2) oblique incidence. From Table II, it is obvious that the block
preconditioner works well in the two cases. In case 1) the near-field
energy scattered from the metal nanoparticles is mainly distributed
along the polarization direction (x-direction) of the incident field
based on the wave physics of the local plasmon. When we try to
divide more blocks along the x-direction and maintain the same
number of blocks along the z-direction, according to the analysis
of the tradeoff in Section II Part B, less field information will be
contained in each block leading to coarse approximation, which
increases the iteration steps. However, the reduced calculation time
of submatrix equations for smaller blocks exceeds the time con-
sumed by the increased iteration steps, achieving better preprocessing
results. Similarly, in case 2), only a relatively small amount of

TABLE II
COMPUTATIONAL STATISTICS OF OSCS WITH THE

RESIDUAL ERROR ϵ = 10−3

Fig. 8. Residual error versus iteration number for the OSCs.

TABLE III
COMPARISON OF CPU TIME BETWEEN SERIAL AND

PARALLEL IMPLEMENTATIONS

energy penetrates the active layer, which could be explained by the
R−3 decay of the electric field and the reflection by the interface
[33]. The local fields near the nanoparticles are fully contained in the
corresponding blocks, that is the reason why the iteration steps are not
reduced when the number of blocks along the x-direction is different.
However, the calculation time is reduced a lot due to the simplicity of
solving the equation for smaller blocks. Therefore, we conclude that
the small blocks capture field information well and therefore make the
preconditioning more effective. When comparing different divisions
along the vertical direction, the results show that if there is no division
along the z-direction, the whole solution time increases a lot, which
indicates the solution of the submatrix equation is time-consuming
for the block containing the high-contrast dielectric interface.

C. Multithread Parallel Computation

To minimize the computational time as much as possible, we use
OpenMP as an easy-to-use and simple programming environment for
multithread computations to accelerate the FFT. More importantly,
regarding the solution to divided submatrix equations of the precon-
ditioner in the iteration [see (10)], the OpenMP instruction is also
employed to perform parallel computing. The acceleration of them by
the OpenMP is independent of the scheme of precondition. To clarify
the effects of the multithread operations on their acceleration, the
calculation time with and without the parallelization are compared in
Table III. The results show that the multithread operation has a sig-
nificant impact on the acceleration of the divided submatrix equations
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of the preconditioner, which is superior to the acceleration effect on
the FFT. Thus, the acceleration by the OpenMP is mainly attributed
to the employment of solving independent submatrix equations of the
preconditioner.

IV. CONCLUSION

In this work, the VIE-FFT algorithm combined with a parallel
block preconditioned BiCGSTAB method is proposed for modeling
the electromagnetic response from nanostructures with two repre-
sentative examples of focusing metasurfaces and plasmonic solar
cells. The preconditioning method employs the block decomposition
technique compatible with the geometric features of nanostructures to
speed up the iteration, which is suitable for OpenMP parallel imple-
mentation on distributed memory architectures. Numerical examples
show that wave interaction within nanostructures influences the
numerical performances of the preconditioner. The block regions need
to be set to capture both far-field interference and near-field coupling
effects. Consequently, the iterative steps are significantly reduced by
using the developed preconditioner. In future works, expanded blocks
containing more field information for nanoelectromagnetic problems
are worth investigating.
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