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Abstract— A directional multilevel complex-space fast multi-
pole algorithm (DMLCSFMA) is proposed for solving electrically
large problems of various dimensions. This algorithm implements
a high-frequency generalization of the well-known mid-frequency
multilevel fast multipole algorithm (MLFMA). It is established by
exploring the fundamental connection between the conventional
MLFMA and the recently developed directional fast multipole
algorithms (D-FMAs), as well as the plane wave expansion
induced from the complex source beam [Gaussian beam (GB)].
Different from the conventional MLFMA which exhibits the
complexity of O(N2) for certain situations such as the quasi-
1-D elongated object, the proposed high-frequency generalized
version is capable of achieving a stable complexity of O(N log N),
irrespective of the dimensional features of the objects. Besides, the
proposed algorithm also manifests itself as a spectral counterpart
of the traditional D-FMAs. However, unlike the traditional
D-FMAs which leverage the equivalent source-based sampling
expansions, the proposed algorithm is established using the
plane wave-based exponential expansions. Thus, the feasibility
of building a D-FMA with analytically diagonalized translators
is also demonstrated in this work. Several numerical examples
are provided to illustrate the complexity and accuracy of the
proposed algorithm.
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algorithm (FMA), Fraunhofer far-field condition, Gaussian beam
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I. INTRODUCTION

THE fast multipole algorithm (FMA) is among the “Top
Ten Algorithms of the Century” due to its great influence

on modern science and engineering [1]. It was originally
designed for the rapid simulation of the N-body problems [2],
[3] with the smooth kernels [4], [5], [6], and used for the cal-
culation of the gravitational and electrostatic interactions [5],
[6]. Over the past decades, many new versions of the FMA
have developed, and the effective range of applicability of this
algorithm has been extended significantly [14], [15], [16], [17].

To accelerate the solution of the electrodynamic problems
with the oscillatory kernel [4], an FMA with diagonalized
translators is developed [7], [8], and it reduces the com-
putational complexity of an integral formulation iterative
solver [18] from O(N 2) to O(N 3/2), where N denotes the
number of unknowns. With the interpolation and anterpolation
technique [9], a multilevel (ML) extension of the diagonal
FMA [7], [8], widely known as the MLFMA, is later devel-
oped [10], [11], and it can further reduce the complexity to
O(N log N ) for many electrodynamic problems. These FMAs
are also known as the mid-frequency FMAs [21], and have
been widely used to solve large-scale radiation and scattering
problems characterized by the wave physics [15].

To alleviate the subwavelength breakdown of the MLFMA,
low-frequency FMAs are subsequently developed [10], [20].
Based on the same box-tree framework, the low-frequency
FMAs have been hybridized with the mid-frequency FMA [10]
in a unified manner, yielding broadband FMAs [20], [21].
These broadband schemes can effectively capture both the
wave physics and the circuit physics [4], [16]. They further
enrich the basic theory of the FMA and greatly extend the
scope of applications of the FMA. In particular, they provide
efficient and stable solutions for many real-world engineer-
ing electromagnetic (EM) problems that show a multiscale
nature [16].

Although the FMAs capturing low-frequency and mid-
frequency physics have been firmly established and widely
adopted, it is not the case for the FMAs exploiting high-
frequency physics [4]. As we know, ray-inspired FMAs [35],
[36], [37], [38], [39], such as the ray-propagation FMA
(RPFMA) [35] and fast far-field approximation (FAFFA) [37],
reduce the complexity of the nonnested diagonal FMA [7],
[8] from O(N 3/2) to O(N 4/3). Therefore, a natural idea
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is to integrate the essentials of these ray-inspired algo-
rithms [35], [36], [37], [38], [39] into the ML framework of
the MLFMA [10] so as to gain further improvement on the
complexity of the MLFMA [10]. Some attempts along this
path include FAFFA-MLFMA [24], RPFMA-MLFMA [25],
and recent developments based on the complex source beams
[Gaussian beams (GBs)] [42], [43], [44], [45], [46]. In contrast
to the literature on the nonnested implementations [35], [36],
[37], [38], [39], the papers [24], [25], [46] on employing
directional windowed translators [35], [37], [45] within the ML
framework of the MLFMA [10] only reported the achievable
optimization on the constant factors in front of the asymptotic
complexity factor, while the improvement in the order of the
asymptotic complexity was however not reported. Besides,
although achieving some efficiency optimizations compared
to the mid-frequency MLFMA, in practice the ray-enhanced
counterparts [24], [25] of the MLFMA are rarely adopted in
large-scale computing. This is unlike the conventional mid-
frequency MLFMA [10] whose parallelization strategies have
been actively studied [22], [23].

Recently, more variants of the FMA are developed [27],
[28], [29], [30], [31], [32], [33], [34]. Specifically, for the
static cases with smooth kernels, several kernel-independent
FMAs (KI-FMA) [27], [28], [29] are developed. Some of these
FMAs leverage the spatial sampling expansions [27], [28],
while some are based on the spectral Fourier expansions [29].
Furthermore, for the dynamic cases with the oscillatory ker-
nels, several directional FMAs (D-FMA) [30], [31], [32], [33],
[34] are developed. These D-FMAs are established based
on a kind of directional admissible far-field condition [30].
With such far-field conditions, several expansions [26], [27],
[28] that were originally utilized to build fast algorithms for
the static cases are shown to be equally useful when con-
structing fast algorithms for the dynamic cases. Nevertheless,
among the various kernel expansions, only the spatial domain
expansions [30], [31], [32], [33], [34] such as the Chebyshev
interpolations [33] are exploited to establish the D-FMAs.
To the best of our knowledge, there has been no report on
building a D-FMA with the spectral domain expansions such
as the plane wave expansions [10], [43], [45]. Moreover,
although the D-FMAs [30], [31], [32], [33], [34] and the plane
wave-based mid-frequency FMAs [7], [10] are both designed
for the dynamic cases, the connection between them has never
been explored yet.

Motivated by the above investigations, a directional ML
complex-space FMA (DMLCSFMA) is proposed in this work.
To be more clear, the contributions and significations of this
study are elaborated from the two complementary perspectives
as follows.

1) On the one hand, the proposed algorithm is a
high-frequency generalized version of the conventional
mid-frequency MLFMA [10]. It demonstrates a sys-
tematic way to further incorporate ray physics into
the framework of the MLFMA [10]. The conventional
MLFMA [10] has the limitation that its computational
complexity becomes O(N 2) for certain situations such
as the elongated quasi-1-D object [33]. In contrast,
the proposed high-frequency generalized version of the

MLFMA is capable of achieving stable O(N log N )

complexity, irrespective of the dimensional features
of the objects. Thus, the proposed algorithm achieves
further improvement on the order of the asymptotic
complexity, compared to the MLFMA [10], and corre-
spondingly extends the effective range of applicability
of the MLFMA [10].

2) On the other hand, the proposed algorithm also man-
ifests itself as a spectral counterpart of the traditional
spatial D-FMAs [30], [31], [32], [33], [34]. Previously,
algorithms of similar type were constructed based on
the random sampling [30], Chebyshev interpolation [33],
and adaptive cross approximation [34], respectively.
They all employ spatial sampling expansions based
on the concept of equivalent sources. Instead, plane
waves-based exponential expansions [43], [45] are
adopted herein to implement the overall algorithm.
Thus, the feasibility of establishing a spectral D-FMA
is demonstrated. Furthermore, different from the tradi-
tional spatial D-FMAs [30], [31], [32], [33], [34] which
depend heavily on the matrix compression techniques
and are thus relatively algebra-biased, the proposed
spectral counterpart is established based on the analytic
expansion of the Green’s functions [43], [45]. Hence,
clearer and deeper physical insights can also be gained.

Preliminary results of this study were reported in our confer-
ence paper [49]. Herein, we significantly extend our research
in both theoretical and experimental aspects. Throughout the
article, we use λ to denote the wavelength in free space. Unless
otherwise stated, we use electrical size to characterize the size
of the object.

II. BASIC FORMULATIONS

In this section, the complex source beam-induced plane
wave expansion is first introduced. Then, several unique prop-
erties of this expansion are discussed.

A. Plane Wave Expansion Induced From Complex Source
Beam

Based on the two well-known identities, i.e., the addition
theorem for the dynamic Green’s function and the integral
expression of the spherical Bessel function [8], [53], the
following expansion can be conventionally obtained:

eik|r+d|

|r + d|
=

ik
4π

∞∑
v=0

iv(2v + 1)

h(1)
v (kr)

∫
�

d2k̂eik·dPv

(
k̂ · r̂

)
(1)

where k = kk̂, the integral in the above is defined on the
unit sphere �, h(1)

v (z) is the first kind of Hankel function of
vth order, Pv(z) is the Legendre polynomial of vth order, r
and d are real vectors with their lengths described by d and r ,
respectively. The region of validity for the above expansion (1)
is described by d < r .

Suppose that we have two well-separated groups with radius
R. The centers of the two groups are denoted by rm and rn ,
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Fig. 1. Geometric settings for the complex source beam (GB) induced
plane wave expansion. In the above, the complex-space extension has been
introduced. Here, we treat i r̂mn as an extra dimension. Note that, when the
beam parameter 1 is set to zero, the above reduces to the conventional settings
for the mid-frequency MLFMA. (a) Configuration of the translation vectors.
(b) Equivalent representation.

respectively. Then, considering a field point ri within group m
and a source point r j within group n, and referring to Fig. 1(a),
we have the following geometric relations [45]:

ri j = ri − r j = ri − rm + rm − rn + rn − r j

=
[
rim +

(
i1r̂mn + rm

)]
−
[(

i1r̂mn + rn
)
− rnj

]
= rim + rnj − i1r̂mn + rmn + i1r̂mn

=
(
rim + rnj − i1r̂mn

)
+ (rmn + i1)r̂mn (2)

where by “adding one term i1r̂mn , and subtracting the same
term i1r̂mn ,” complex coordinate extension is introduced.
Here, 1 is referred to as the beam parameter. Accordingly,
denoting

dc = rim + rnj − i1r̂mn (3)

rc = rc r̂mn = (rmn + i1)r̂mn (4)

as depicted in Fig. 1(b), and substituting into (1), we have

eik|ri j |

|ri j |
=

ik
4π

∞∑
v=0

iv(2v + 1)h(1)
v (k{rmn + i1})∫

�

d2k̂eik·(rim+rnj −i1r̂mn)Pv

(
k̂ · r̂mn

)
(5)

which holds for 1 ≥ 0 and rim + rnj ∈ 8, where 8 denotes
the region of validity for expansion (5). Here, 8 is described
by the interior of a body of revolution and depends on both
rmn and 1 [43], [45].

For convenience, the left-hand side of (5) is denoted as
G(ri j ) where ri j = |ri j |. Truncating the infinite series in the
right-hand side of (5), followed by exchanging the order of
summation and integration, a plane wave expansion is then
obtained as follows:

G
(
ri j
)

≈

∫
�

d2k̂β
(
k̂, rim, rnj

)
αmn

(
k̂, rmn, 1

)
(6)

where

β
(
k̂, rim, rnj

)
= eikk̂·(rim+rnj) (7)

is the radiation pattern, and

αmn
(
k̂, rmn, 1

)
=

ik
4π

ek1k̂·r̂mn

V∑
v=0

iv(2v + 1)h(1)
v (k{rmn + i1})Pv

(
k̂ · r̂mn

)
(8)

is referred to as the GB translator, where V denotes the
truncation length. Such a translator reduces to the conven-
tional translator adopted in the MLFMA [10] when 1 = 0.
In practice, to maintain the numerical stability, (8) is further
recast into

αmn
(
k̂, rmn, 1

)
=

ik
4π

ek1(k̂·r̂mn−1)

V∑
v=0

iv(2v + 1)h̃(1)
v (k{rmn + i1})Pv

(
k̂ · r̂mn

)
(9)

where h̃(1)
v (Z) = h(1)

v (Z)eIm(Z) is the normalized spherical
Hankel function [43].

B. Far-Field Setting and Beam Parameter

To facilitate subsequent discussions, here we consider a
specific geometric far-field setting between two well-separated
groups, together with a particular rule for choosing the beam
parameter 1. Motivation for these assumptions will be dis-
cussed later in Section II-E.

Concretely, consider the specific far-field setting where the
central distance rmn between the field group m and the source
group n is set by

rmn = fQFF(R) := CQFF · R2
= O

(
R2) (10)

where CQFF is a prespecified constant, and the rmn considered
here is thus a quadratic function of the group radius R. Then,
for such a specific geometric setting, consider the particular
rule for choosing 1 as follows:

1 = σ · fQFF(R) = σ · CQFF · R2
= O

(
R2) (11)

where σ is a prespecified positive constant, and here 1

is configured to be linearly proportional to fQFF(R), thus a
quadratic function of R as well.

In the following, two unique properties of the complex
source beam induced plane wave expansion (6) will be further
discussed, for the specified settings (10) and (11) mentioned
above.

C. Truncation Length

When 1 = 0, the conventional closed-form excess band-
width formula [15] provides a good estimate of the required
truncation length V for a prescribed tolerance ε. However, with
the complex-space extension (i.e., 1 > 0), such a closed-form
formula is no longer applicable [42]. Hence, when 1 > 0,
the required truncation length V is in general determined by
directly finding the smallest integer V that satisfies

|G
(
ri j
)
−

V∑
v=0

Uv

(
1, rmn, r̂mn, rim, rnj

)
| ≤ |G

(
ri j
)
| · ε (12)
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Fig. 2. Changing trends of the ratio V/R for increasing R. Here, the far-field
setting rmn is as described in (10), with 1 chosen by the particular rule (11).
The truncation length V is directly calculated from (12) for a given truncation
tolerances ε. Clearly, as R increases, V/R = O(1), implying that V = O(R).
Besides, the trends for different truncation tolerances ε are illustrated.

for all possible locations of rim and rnj , where

Uv

(
1, rmn, r̂mn, rim, rnj

)
= ik(−1)v(2v + 1)

h(1)
v (krc)jv(kdc)Pv

(
d̂c · r̂mn

)
(13)

with the length dc = (dc · dc)
1/2 being a complex length [43].

The square root is defined to have a nonnegative real part and
the branch cut along the negative real axis.

Nevertheless, for two interacting groups characterized by
the specific far-field setting (10), with 1 chosen by the
particular rule (11), it can be shown that the required truncation
length V still follows the same leading order behavior as the
conventional excess bandwidth formula [15], namely

V = O(R). (14)

That is, the required truncation length V is still linearly
proportional to the group radius R, even if the in-group vector
rim + rnj has been augmented with i1r̂mn , where 1 = O(R2).
Some theoretical explanations on the above property (14)
are given in Appendix A. Here, some numerical results are
calculated, for verifying (14). For clarity, the ratios between
V and R are illustrated in Fig. 2. As expected, such ratios
are shown to be almost constant order for increasing R, thus
implying (14) above.

D. Range of Window

As a result of the complex-space extension, the GB trans-
lator αmn(2) exhibits an obvious windowed feature in the
angular spectrum domain, where 2 ∈ [0, π] is the angle
between k̂ and r̂mn . For two interacting groups, only those
plane waves k̂ near the direction of r̂mn have prominent
contributions and needs to be retained for achieving accurate
far-field translations. In general, the corresponding prominent
range 2δ can be determined by finding the smallest 2 subject
to [43]

|αmn(2)| ≤ max
2′∈[0,π ]

|αmn
(
2′
)
| · δ (15)

where δ is a prescribed threshold for cutting off the window.
In particular, for two interacting groups characterized

by (10), it can be shown that, with the 1 chosen by (11),
the prominent range 2δ asymptotically follows:

2δ = O(1/R). (16)

Fig. 3. Changing trends of the product 2δ · R for increasing R. Here,
1 is chosen by the particular rule (11). The cut-off range 2δ is numerically
calculated from (15), with a cut-off threshold δ = 10−15. Clearly, as R
increases, 2δ · R = O(1), thus implying 2δ = O(1/R). Besides, the trends
for different truncation tolerances ε are illustrated.

Some analysis to reveal the above property is given in
Appendix B. To verify the above property, the changing trends
of the product 2δ · R for increasing R are here numerically
investigated, as shown in Fig. 3. As expected, 2δ · R = O(1),
thus implying (16) above.

E. Further Discussion

The conditions (10) and (11) are so far introduced as
arbitrary assumptions. To gain deeper insight into the nature of
the problem, a motivation for the assumptions (10) and (11) are
further discussed as follows. The main feature of the “Gaussian
translator” (8) is the exponential factor

exp
(
k1k̂ · r̂mn

)
≈ exp(k1) exp

(
−k122/2

)
(17)

i.e., an approximate Gaussian dependence on the angle 2

between k̂ and r̂mn . The resulting GB distribution in the
plane-wave directions k̂ has the width

2GB ∼
1

√
k1

=

√
λ

2π1
. (18)

If one wants to interpret this beam as emitted by an aperture,
the aperture diameter, say R̄, has to be R̄ ∼ (2πλ1)1/2.
Conversely, a source (cluster) of size R̄ can emit a beam of
“diffraction-limited” width

2d ∼
λ

π R̄
(19)

characterized by the far-field (diffractive or Rayleigh) range

R̄d ∼
R̄

2d
∼

π R̄2

λ
. (20)

One can then identify the angles and far-field ranges, 2GB =

2d and rmn = R̄d , provided the conditions (10) and (11) hold,
with

CQFF ∼
1
λ

and σ ∼
1

2π2 . (21)

The assumptions (10) and (11) are thus equivalent to the
“directional parabolic separation condition” of [30] or the
“cluster separation condition (9)” in [33].
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III. ML ALGORITHM

In this section, the essentials of the conventional
mid-frequency MLFMA are briefly reviewed first. Then, the
basic principle and technical key points of the proposed
high-frequency generalized version are introduced.

A. Conventional Mid-Frequency MLFMA

The MLFMA [10] is a box-tree-based ML algorithm, and
diagonal translations are performed between well-separated
(nonneighboring) boxes at each involved level. Usually, the
one-box buffer scheme [13] is adopted, and the nearest
distance between well-separated boxes is then one box-
width. In this case, the central distance rmn between the
well-separated boxes satisfies the following far-field condition:

rmn ≥ fLFF(R) := CLFF · R (22)

where fLFF(R) is linear as a function of R and CLFF is a
constant. With the above linear condition (22), the far-field
boxes exist at the levels l = 2, . . . , L , where L ∼ log W and
W denotes the edge length of the root box at level l = 0.

The plane wave expansion adopted by the MLFMA is a
special case of the expansion (6), i.e., expansion (6) with 1 ≡

0. Hence, with the conventional quadrature rules [15] (i.e.,
Gaussian quadrature rule along θ and trapezoidal quadrature
rule along φ), the discretized expansion for the MLFMA can
be formulated as

G
(
ri j
)

≈

∑
k̂q 7→�

wq β
(
k̂q
)
αmn

(
k̂q , rmn, 1 ≡ 0

)
(23)

where {� : θ ∈ [0, π], φ ∈ [0, 2π ]} denotes the whole sphere.
In the above, k̂q 7→ � denotes that the required quadrature
nodes k̂q cover the whole sphere �. In principle, the number
of the required nodes is determined by the truncation length
V and is typical of O(V 2) on the sphere [8]. Since k̂q of
all directions are involved, the far-field translation procedures
based on (23) can be referred to as the full translations.
By performing such full translations for all the levels involving
well-separated boxes (i.e., levels l = 2, . . . , L), all the far-field
interactions are thus taken into account [15].

Another important element of the MLFMA is the interpola-
tion of the outgoing waves and anterpolation of the incoming
waves, which can be formulated as

B
(

k̂(l−1)

q

)
=

∑
k̂(l)

q

h
(

k̂(l−1)

q , k̂(l)
q

)
B
(

k̂(l)
q

)
(24)

where k̂(l)
q and k̂(l−1)

q denote the quadrature nodes at level l and
parent level l − 1, h(·, ·) denotes the interpolation kernel, and
B(·) denotes the outgoing waves in the aggregation process or
the incoming waves in the disaggregation process.

Moreover, the computational cost for performing the
far-field translations at level l can be described concretely by

T (l)
= N (l)

LBox × M (l)
TList × K (l)

TPair (25)

where N (l)
LBox denotes the total number of boxes at level l,

M (l)
TList denotes the maximum length of the interaction list

for boxes at level l, K (l)
TPair denotes the translation content

Fig. 4. Function curves for the linear far-field (LFF) fLFF(R) := CLFF · R
and the quadratic far-field (QFF) fQFF(R) := CQFF · R2. A crossover point
can be seen from the figure. Physically, the range below the crossover point
can be viewed as the low-to-mid (L2M) frequency regime where the circuit
and wave physics dominate, while the range above the crossover point can be
viewed as the mid-to-high (M2H) frequency regime where the wave and ray
physics dominate.

between well-separated boxes at level l. It is well known
that, if a 3-D electrodynamic problem modeled by the surface
integral equation (SIE) is solved using the MLFMA, then T (l)

is characterized by the following relation [15]:

M (l)
TList ∼ O(1), N (l)

LBox × K (l)
TPair ∼ O(N ) (26)

where l = 2, . . . , L . Clearly, T (l)
∼ O(N ) for varying l.

In this case, an O(N log N ) complexity is obtained when
all l = 2, . . . , L levels are taken into account, where
L = O(log N ). However, one fundamental limitation of the
MLFMA is that such O(N log N ) complexity is not always
achievable for objects of different dimensional features, and
the MLFMA exhibits O(N 2) complexity for certain situations
such as the extremely elongated object [33].

B. High-Frequency Generalization of the MLFMA

In the following, we present a systematic way to gen-
eralize the above mid-frequency diagonal MLFMA, by full
exploitation of the high-frequency ray physics. To achieve this
goal, referring to (10), the following QFF condition is further
considered:

rmn ≥ fQFF(R) := CQFF · R2. (27)

With the above quadratic condition (27), the far-field boxes
exist only at the levels l = L , . . . , 0, where 0 ∼ log(W )1/2

≈

L/2. This means the number of the levels involving far-field
boxes is asymptotically half of that under the LFF condi-
tion (22).

To facilitate subsequent discussions, the function curves
for both the linear function fLFF(R) and the quadratic func-
tion fQFF(R) are plotted in Fig. 4. For these two functions,
a crossover point exists at

RM2H = CLFF/CQFF. (28)

Suppose that the levels whose group radii satisfy R(l) < RM2H
correspond to l = L , . . . , L1 + 1. Accordingly, the rest of
the levels whose group radii satisfy R(l)

≥ RM2H corre-
spond to l = L1, . . . , 0, . . . , 2, . . . , 0. Then, in this work,
the full translations used by the conventional mid-frequency
MLFMA are applied only for the first few lower levels l =

L , . . . , L1 + 1 where the LFF conditions (22) are adopted,
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and the windowed translations presented in Section II are
applied for the rest of the higher levels l = L1, . . . , 0 where
the QFF conditions (27) are adopted. To be more clear, the
proposed arrangements can be summarized as follows:

Linear Far Field︷ ︸︸ ︷
L , . . . , L1 + 1︸ ︷︷ ︸

Full Translations

,

Quadractic Far Field︷ ︸︸ ︷
L1, · · · · · · · · · · · · , 0︸ ︷︷ ︸

Windowed Translations

, · · · , 2, · · · , 0. (29)

Thus, for two interacting far-field groups at level l =

L1, . . . , 0, only the quadrature nodes k̂q within a spherical
cap are required for achieving the far-field translations. Con-
sequently, instead of (23), the following expansion is adopted
at level l = L1, . . . , 0, namely

G
(
ri j
)

≈

∑
k̂q 7→9

wq β
(
k̂q
)
αmn

(
2⟨k̂q , r̂mn⟩, rmn, 1

)
(30)

where {9 : 2 ∈ [0, 2δ]} denotes the spherical cap and the
beam parameter 1 is configured with the particular choice (11)
introduced in Section II-B. In the above, k̂q 7→ 9 denotes
that the required quadrature nodes k̂q are confined within the
spherical cap 9. This spherical cap 9 is revolved around the
direction vector r̂mn , with the spanning angle determined by
the cut-off range 2δ .

Furthermore, invoking (14) and (16), the number of the
quadrature nodes k̂q required to accomplish accurate far-field
translations can be estimated as follows:

Kmn = O

(
V 2

·
(2δ)

2

4π

)
= O

(
R2

·

(
1
R

)2
)

= O(1) (31)

where V 2 indicates the order of the total number of nodes
on the whole sphere, (2δ)

2/4π indicates the ratio of the
spherical cap and the whole sphere. The above says that,
to achieve accurate translations under the QFF condition (27),
the required quadrature nodes (translation contents) do not
grow for increasingly larger groups, and maintain constant
order as function of the group radius R. Physically, the
above relation (31) is a manifestation of the limited degree
of freedom (DoF) [50], [51] of the scattered fields, where the
fields are radiated from a source antenna with an aperture of
radius O(R) and observed within an area of radius O(R),
and the distance between the source and field is subject to the
Fraunhofer far-field condition [54] which is O(R2).

Correspondingly, instead of (26), the computational cost T (l)

for varying l are here characterized by [30], [31], [32], [33],
[34]

K (l)
TPair ∼ O(1), N (l)

LBox × M (l)
TList ∼ O(N ) (32)

where l = L1, . . . , 0. In accordance with (31), the translation
content K (l)

TPair remains constant order for varying l. Note
that, although a different kind of workload distributions is
adopted at the higher levels l = L1, . . . , 0, the windowed
translations (30) can be unified seamlessly with the full trans-
lations (23) performed at the lower levels l = L , . . . , L1 + 1.
In fact, the windowed translations approach the full transla-
tions at the transition level l = L1, where the distance of
the QFF (27) reduces roughly to that of the LFF (22), and
meanwhile the area of the spherical cap 9 enlarges nearly to
that of the whole sphere �.

C. Quadrature Nodes and Interpolation Samples

With the above high-frequency evolvement, relevant pro-
cedures involving the numerical integration and the spherical
interpolation need to be reconsidered and modified, compared
to the conventional mid-frequency MLFMA.

Referring to (30) and (31), for given a source group n
and a far-field group m, only a subset k̂q 7→ 9 of all the
spherical samples (discrete plane wave directions) on � are
necessary to achieve the windowed translations. Suppose that
this subset is denoted as Kmn . Since a source group generally
interacts with more than one far-field group, e.g., M far-
field groups (i.e., far-field group m with m = 1, . . . , M),
the spherical samples required for the given source group n
are thus determined by the union K̄n of M subsets, namely,
K̄n =

⋃
Kmn with m = 1, . . . , M . In many cases (e.g., the 1D

surface problems discussed in Section IV), this union subset
K̄n can be much smaller than the universal set containing all
the spherical samples on �. Therefore, to avoid unnecessary
computations so as to truly achieve improved asymptotic
complexity, a compact and sparsified paradigm should be
considered, in which only the necessary union subset (e.g., K̄n)
is involved throughout the whole computational process and
the complementary subset containing unnecessary spherical
samples on � is never involved. To achieve this goal, the
rotation and interpolation techniques [40], [41] are further
incorporated. Correspondingly, the modified procedures are as
follows.

1) Coordinate System Rotation: Except for the original
coordinates system O⊥, a rotated coordinates system O′

⊥ [40],
[41] is defined for each given translation direction rmn . The
z′-axis of O′

⊥ is defined to be parallel to rmn , i.e., ẑ′
∥ rmn . For

clarity, in the following, the prime superscript is used to denote
that the variables are evaluated in the rotated coordinate system
O′

⊥. Correspondingly, the Green’s function expansion (6) can
be recast in O′

⊥ as follows:

G
(
ri j
)

≈

∫
�′

β ′
(
k̂′
)
α′

mn

(
k̂′

· ẑ′, rmn, 1
)
d2k̂′ (33)

where �′ denotes the whole unit spherical surface.
2) Quadrature on Spherical Cap: Due to the windowing

effect of the GB translator, the required integral domain in (33)
can be reduced from �′ to 9 ′, where 9 ′ denotes the spherical
cap characterized by the cut-off window. Then, numerical
integration is evaluated only on such spherical cap 9 ′ (i.e.,
reduced integral domain), rather than on the whole sphere �′,
yielding

G
(
ri j
)

≈

∑
k̂′

qc 7→9 ′

w′
qc β ′

(
k̂′

qc
)
α′

mn

(
k̂′

qc
)

(34)

where k̂′
qc 7→ 9 ′ denotes that the quadrature nodes k̂′

qc lie
within the spherical cap 9 ′.

In the above, the range of the cap 9 ′ is described precisely
by θ ′

∈ [0, 2δ] and φ′
∈ [0, 2π ]. In this case, the conven-

tional Gaussian and trapezoidal quadrature rules [15] for the
MLFMA are still appropriate choices and can also be applied
here with respect to θ ′ and φ′, respectively. Illustrations of
the spherical cap 9 ′ and corresponding quadrature nodes are
shown in Fig. 5. Furthermore, to integrate the spherical cap
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Fig. 5. Illustration of the spherical cap 9 ′ on the sphere �′, and the
corresponding quadrature nodes k̂′

qc on 9 ′. Here, instead of performing the
numerical integration on the whole sphere � in the original coordinate O⊥,
the proposed algorithm only needs quadrature on the spherical cap 9 ′ in the
rotated coordinate O′

⊥. (a) Spherical cap. (b) Quadrature nodes.

region 9 ′ accurately, the required quadrature orders maintain
constant order for increasing R, as implied from (31).

3) Interpolation of Radiation Pattern: The quadrature nodes
k̂′

qc in (34) are defined for a given far-field translation direction
(i.e., a given rmn), thus direction-dependent. Therefore, for
a different translation direction, a different set of quadrature
nodes k̂′

qc needs to be defined. However, to establish a FMA,
the far-field translations along different translation directions
should share a common set of spherical samples. To this end,
the interpolation technique [40], [41] is further incorporated,
and a discrete plane wave expansion allowing for cycling
information is then derived as follows.

Denoting k̂qc in O⊥ as the corresponding spherical sample
whose direction is parallel to that of k̂′

qc in O′
⊥, and invoking

the definition of the radiation pattern function β as in (7), it is
easy to show that [41]

β ′
(
k̂′

qc
)

= β
(
k̂qc
)
. (35)

Moreover, denoting k̂s as a set of spherical samples on �, and
using appropriate interpolation scheme, the radiation pattern
function β sampled at k̂qc can be expanded as

β
(
k̂qc
)

=

∑
k̂s

h
(
k̂qc, k̂s

)
β
(
k̂s
)

(36)

where h(·, ·) denotes the interpolation kernel. Then, with (35)
and (36), the expansion (34) can be transformed into a different
form by the following manipulations:

G
(
ri j
)

≈

∑
k̂′

qc 7→9 ′

w′
qcα

′
mn
(
k̂′

qc
)
β ′
(
k̂′

qc
)

=

∑
k̂′

qc 7→9 ′

w′
qcα

′
mn
(
k̂′

qc
)
β
(
k̂qc
)

=

∑
k̂′

qc 7→9 ′

w′
qcα

′
mn
(
k̂′

qc
)∑

k̂s

h
(
k̂qc, k̂s

)
β
(
k̂s
)

=

∑
k̂s

β
(
k̂s
) ∑

k̂′
qc 7→9 ′

w′
qcα

′
mn
(
k̂′

qc
)
h
(
k̂qc, k̂s

)
=

∑
k̂s

β
(
k̂s
)
αmn

(
k̂s
)

(37)

where exchanging the order of summations has been per-
formed and

αmn
(
k̂s
)

:=

∑
k̂′

qc 7→9 ′

w′
qc α′

mn

(
k̂′

qc
)
h
(
k̂qc, k̂s

)
. (38)

Fig. 6. Mapping relations between the quadrature nodes k̂′
qc and the

interpolation samples k̂s . With the local interpolation, each k̂′
qc is associated

with a constant number of k̂s , as depicted by the dot lines. The spherical area
covered by the spherical cap 9 is similar to that covered by 9 ′. Here, �′ and
� denote the whole spheres in the rotated and original coordinate systems,
respectively.

Different from (34), the expansion (37) now expands the
Green’s function in terms of the interpolation samples k̂s

defined in O⊥. With such expansion, the far-field translations
along different translation directions (i.e., different rmn) can
thus share a common set of spherical samples (i.e., k̂s in O⊥).

In the above, two types of spherical samples are involved,
including the quadrature nodes k̂′

qc and the interpolation sam-
ples k̂s . As we know, to interpolate the bandlimited radiation
pattern function β(·) accurately at some k̂qc (corresponding to
each k̂′

qc) in the context of the MLFMA [15], the required
local interpolation stencil samples k̂s around k̂qc do not need
to grow for increasing R [12], meaning that each k̂′

qc is
only associated with constant number of k̂s . Meanwhile, the
required k̂′

qc 7→ 9 ′ is of constant order for increasing R.
Hence, combining these two aspects, it can be known that
the interpolation samples k̂s required for interpolating all
the quadrature nodes k̂′

qc within 9 ′ are still concentrated
within a spherical cap region (denoted here by k̂s 7→ 9) and
also maintain constant order for increasing R. For clarity,
an illustration of the mapping relation between k̂′

qc and k̂s

is depicted in Fig. 6. Notably, to achieve such a relation,
the distributions of k̂s on the sphere are not critical, and
we are free to choose the spherical interpolation schemes
and corresponding interpolation samples. Hence, in addi-
tion to the commonly-used Lagrange interpolation [15], the
well-established optimal spherical interpolation scheme [52]
can also be adopted.

Besides, with the above modifications, the outgoing waves
during the aggregation, as well as the incoming waves during
the disaggregation, are thus sampled at the spherical samples
k̂s . Consequently, instead of (24), the interpolations and anter-
polations are correspondingly reformulated as follows:

B
(

k̂(l−1)

s

)
=

∑
k̂(l)

s

h
(

k̂(l−1)

s , k̂(l)
s

)
B
(

k̂(l)
s

)
. (39)

Here, k̂s are the interpolation samples employed in (36)
and (37). They are a different set of spherical samples relative
to the quadrature nodes (i.e., k̂′

qc). This is unlike (24), in which
the outgoing and incoming waves B(·) are sampled at the
quadrature nodes [i.e., k̂q in (24)], and these quadrature nodes
also play the role of the interpolation samples.

4) Remark: Although the modified procedures introduced
above are primarily meant to realize the nonredundant
workflow of the higher levels l = L1, . . . , 0 where the win-
dowed translations are employed, such modified procedures
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Fig. 7. Illustration of the volume problems with three different types of
dimensional features. These problems are classified here as volume problems
because the considered object of certain dimensional features fills the space of
corresponding characteristic dimensions in a densely packed manner. This is
in contrast to the surface problems (discussed later) where only the boundary
areas of the above solid objects are utilized to model the problems and
thus the occupied spaces are more sparsely populated. (a) Expanded in 3-D.
(b) Expanded in 2-D. (c) Expanded in 1-D.

themselves are however universal and also applicable to the
lower levels l = L , . . . , L1 + 1 where the full translations are
employed. With this in mind, the modified procedures can
thus be adopted for all the l = L , . . . , 0 levels involved.
Consequently, unified procedures can be obtained for the
overall ML algorithm.

IV. COMPLEXITY ANALYSIS

The proposed algorithm inherits the diagonal translation
feature of the MLFMA and the workload distributions of
the D-FMAs. The asymptotic complexity of the proposed
algorithm is therefore similar to that of the D-FMAs [30], [33].
Relevant complexities are thus only briefly analyzed herein, for
a better understanding and for the completeness of the article.

The object is discretized conventionally with the quasi-
uniform mesh, yielding N unknowns. The width of the root
box of the box-tree is here denoted by W . Clearly, in the usual
box-tree setting, R(l)

= O(W/2l) where l = L , . . . , 0, and
R(L)

= O(W 0) = O(1) where L = O(log W ). For notational
simplicity, in the following, we omit the superscript and use
R to express R(l) without compromising understanding. Then,
the total number of nonempty boxes at level l is characterized
by N (l)

LBox = O((W/R)τ ) = O((2l)
τ
).

A. Complexity Analysis for the Volume Problems

Depending on the dimensional features of the objects, three
types of problems are first considered, as shown in Fig. 7. For
simplicity, these problems are categorized here as the volume
problems, since the object of certain dimensional features
fills the space of corresponding characteristic dimensions in a
densely packed manner. For such volume problems, we have

N = O(W τ ), τ = 1, 2, 3 (40)

where τ characterizes the dimensional features of the object.
The complexity of the conventional mid-frequency MLFMA

is first outlined for the above volume problems. Referring
to (25), the translation cost at level l = L , . . . , 2 is described
by

T (l)
= O

(
(W/R)τ · 1 · R2)

= O
(
W τ

· R2−τ
)
. (41)

Invoking the relation between W and R, the above becomes

T (l)
= O

(
W τ

·
(
W/2l)2−τ

)
= O

(
W 2

·
(
2τ−2)l). (42)

Then, summing up the costs of all the involved levels yields

2∑
l=L

T (l)
=


O
(
W 2

· W
)

= O
(
W 3)

= O(N ), τ = 3
O
(
W 2

· log W
)

= O(N log N ), τ = 2
O
(
W 2

· 1
)

= O
(
W 2)

= O
(
N 2), τ = 1.

(43)

Moreover, when the usual local interpolations are adopted,
the complexities for the aggregations and disaggregations are
the same as those for the translations. The complexities for
both the 3-D and 2-D volume problems are therefore O(N )

and O(N log N ), respectively. However, the complexity for
the 1-D volume problems (i.e., elongated objects) is O(N 2),
which is unfavorable in practice.

The complexity of the proposed algorithm is then outlined.
For the proposed algorithm, the total cost is dominated by the
translation cost at the higher levels l = L1, . . . , 0. Referring
to (25), the translation cost for each of these higher levels is
described by

T (l)
= O((W/R)τ · Rτ

· 1) = O(W τ ) = O(N ). (44)

Notably, in (44), cancelation happens in terms of R, or more
precisely, in terms of Rτ , thus making such computational
cost dimensionless. Consequently, for all the three types of
volume problems considered (i.e., τ = 1, 2, 3), the total cost
summing up all the involved levels l = L , . . . , 0 always
follows O(N log N ).

B. Complexity Analysis for the Surface Problems

In practice, we often encounter another category of prob-
lems, where only the boundary areas of the above solid
objects are utilized to model the problems and thus the
occupied spaces are more sparsely populated. This category
of problems is thus referred to as the surface problems and is
also considered herein. For such surface problems, we have

N = O
(
W τ−1), τ = 1, 2, 3. (45)

Following similar argumentations for the volume problems,
it can be easily shown that the MLFMA has O(N log N ) com-
plexity for the 3-D surface problem and O(N 2) complexity for
the 2-D surface problem, while the proposed algorithm has
O(N log N ) complexity for both cases.

Notably, for the 1-D surface problem, N no longer scales
with respect to W , i.e., N = O(W 0) = O(1). Due to such
degeneracy, this case is analyzed separately and paid special
attention. A typical example of this degenerate case is the
interaction between two objects separated by some distance
W̃ . Note that, with the usual box-tree grouping, W̃ ∝ W .
When W̃ → ∞, these two objects can be simply treated as
two points. In the following, the complexity of such two points
interaction problems is analyzed without loss of generality.
Besides, only the complexity with respect to W needs to be
studied, since N is a constant in this case.

When the MLFMA is used, the far-field translations are
performed only between two well-separated groups at level
l = 2, yielding

2∑
l=L

T (l)
= T (2)

= O
(
R2)

= O
(
W 2). (46)
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Moreover, for this particular case, the cost for the aggregations
and disaggregations is characterized by

2∑
l=L

T (l)
K = O

(
2∑

l=L

(
R(l))2

)
= O

(
2∑

l=L

(
W
2l

)2
)

= O
(
W 2)

(47)

where T (l)
K denotes the interpolation and anterpolation cost

for level l and is in principle characterized by the number
of the samples involved at level l. Thus, considering both
aspects above, the total cost is finally O(W 2), which is clearly
unfavorable in practice.

When the proposed algorithm is used, the far-field transla-
tions are performed only between two well-separated groups
at level l = 0, yielding

0∑
l=L

T (l)
= T (0)

= O
(
R0)

= O(1). (48)

Then, the cost for the aggregations and disaggregations is
considered. Since the samples k̂s involved at level 0 are
here determined by the samples necessary for the two-group
translations at level 0, the interpolation and anterpolation costs
T (l)

K for level l = 0 are thus described by

T (0)
K = T (0)

= O
(
W 0)

= O(1) (49)

and meanwhile the involved samples k̂s at level 0 are thus
confined within a cone region. Moreover, since the sampling
densities are reduced by almost a half along each of the
two dimensions (i.e., θ and φ) of the spherical surface when
descending the levels, the interpolation and anterpolation costs
between adjacent levels are therefore related by

T (l+1)
K ≈ T (l)

K /4, l = L − 1, · · · , 0. (50)

With (50) in mind, the cost for the aggregations and disaggre-
gations of all the involved levels is then described by

0∑
l=L

T (l)
K ≈ T (0)

K ·

[
1 +

1
4

+

(
1
4

)2

+ · · ·

(
1
4

)L−0
]

(51)

which implies

T (0)
K <

0∑
l=L

T (l)
K < 2 · T (0)

K . (52)

Combining (49) and (52), the cost for the aggregations and
disaggregations thus follows:

0∑
l=L

T (l)
K = O

(
T (0)

K

)
= O

(
W 0)

= O(1). (53)

Then, taking both (48) and (53) into account, the total cost
is finally O(1). Besides, since N is a constant in this case,
we thus have O(N log N ) = O(1). Consequently, for the 1-D
surface problems, the proposed algorithm can also be regarded
as following the complexity of O(N log N ). In other words,
for the 1-D/2-D/3-D volume and surface problems considered,
a complexity of O(N log N ) can always be achieved.

V. NUMERICAL EXAMPLES

For the proposed algorithm, several parameters are specified
as follows. The width wL of the bottom level box is set to 0.2λ.
The number of LFF levels used is denoted by PLFF, and PLFF
is here set to 4. The truncation tolerance ϵ is set to 0.1. The
constant σ is set to 0.05, and the threshold δ is set to 1.0E-3.
More discussions on the choice of the parameters (wL , PLFF,
and σ ) and relevant constants (CLFF and CQFF) are given in
Appendix C.

The combined field integral equation (CFIE) is here
employed to characterize the scattering problem [15].
The objects considered are discretized with the triangular
mesh [55]. The edge length of the mesh is by convention set
to about 0.1λ. The method of moments (MoMs) [18] with
the Rao–Wilton–Glisson (RWG) functions [19] discretization
is then adopted routinely. The conjugate gradient stabilized
(CGS) method [56] is used to solve the MoM matrix equation.
The iteration residual is set to 1.0E-3. The block diagonal
preconditioner is employed to improve the convergence [10].

A. Complexity and Accuracy

In the following, the proposed fast matrix-vector product
(MVP) is tested for problems of various dimensional features.
The MVP results obtained using the brute-force method (i.e.,
dense MVP) are used as the reference to calculate the relative
errors.

First, the 1-D surface problem is considered. Concretely, the
two points interaction problem is studied. For this problem,
we always have N = 2, and the computational performance
with respect to the distance W̃ between these two points is
investigated. The computational time and relative errors with
respect to W̃ are illustrated in Fig. 8(a) and (b), respectively.
It can be seen that the MVP time follows the trend of O(1)

complexity, as expected. Moreover, it is seen that, as W̃
increases, the relative errors maintain almost constant order.

Then, we consider the surface problems where N increases
with respect to W , i.e., the 2-D and 3-D surface problems.
Clearly, these problems are typical N-body problems with
highly oscillatory kernels. Without loss of generality, here we
use the point distributions to characterize the object consid-
ered. The point distributions and corresponding computational
results are illustrated in Fig. 8. In these figures, we use XYZ to
characterize the geometric range spanned by the object. The
spacing between the points along each dimension is 2.0 λ.
Here, denoting the number of points discretized along each
cartesian coordinate direction as p̄, then N = p̄τ

− ( p̄ − 2)τ

points are employed to characterize the object, where τ = 2, 3.
The MVP results for both the 2-D and 3-D surface problems
considered are shown in Fig. 8. We can see that the com-
putational time follows the trend of O(N log N ) complexity.
Furthermore, we can also see that the relative errors maintain
almost constant order for increasingly larger N .

The computational performances for the volume problems
of various dimensional features are further tested. Here, N =

p̄τ points are employed to characterize the objects, where τ =

1, 2, 3. From Fig. 9, we can see that, similar to the results for
the surface problems, the computational time for the volume
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Fig. 8. Time and accuracy for the surface problems of various dimensions. (a) Computational time 1-D. (b) Computational time 2-D. (c) Computational
time 3-D. (d) Relative error 1-D. (e) Relative error 2-D. (f) Relative error 3-D.

Fig. 9. Time and accuracy for the volume problems of various dimensions. (a) Computational time 1-D. (b) Computational time 2-D. (c) Computational
time 3-D. (d) Relative error 1-D. (e) Relative error 2-D. (f) Relative error 3-D.

problems follows the trend of O(N log N ) complexity and the
corresponding relative errors maintain almost constant order
for increasingly larger N .

B. Application to Scattering Problems

To demonstrate the performance for realistic problems, three
typical scenarios are investigated in the following.

1) A rocket model is first considered. The height and the
maximum diameter of the rocket are denoted by the A1 and A2,
respectively. Here, three cases corresponding to different elec-
trical sizes are studied, as shown in Fig. 10(a). Clearly, such
a series of examples correspond to a commonly encountered
scenario, i.e., a given object illuminated by incident waves
of different incident frequencies f . Suppose that the height
A1 and the maximum diameter A2 of the rocket model are
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Fig. 10. Geometric settings of the rocket model and corresponding MVP
times. (a) Geometric settings. (b) MVP time.

Fig. 11. RCS results and solution times for the rocket model. (a) RCS EX1.
(b) RCS EX3.

Fig. 12. Distribution of the computational work for the rocket model.
(a) Workload distributions EX1. (b) Workload distributions EX3.

84 and 16 m, respectively. Then, case 1 corresponds to the case
with the incident frequency f = 300 MHz. Meanwhile, cases
2 and 3 correspond to the cases with the incident frequencies
f = 600 MHz and f = 1.2 GHz, respectively.

The rocket is obviously a 3-D object. Moreover, the scat-
tering problem is here characterized by the SIE (i.e., the
CFIE adopted herein). Thus, for increasing f , the number of
unknowns N should be proportional to the surface area of
this 3-D object. This means that, for increasing f , N should
be proportional to the square of the span of the object [i.e.,
N = O(A1

2) = O(A2
2)], whatever the shape of the object

(i.e., even if the ratio A1/A2 is very large and the object shape
is highly elongated). Consequently, for the three abovemen-
tioned cases with increasing N (induced by the increase in
f ), the resultant MVP times of both the MLFMA and the
DMLCSFMA should follow the trend of the complexity of
the 3-D surface problem discussed in Section IV-B. That is,
both algorithms should exhibit O(N log N ) complexity, for the
rocket examples considered. In Fig. 10(b), the resultant MVP
times of both algorithms are illustrated, and the numerical
results are in good agreement with the theoretical predictions.
Besides, in Fig. 11, the RCS results and solution times for the
rocket model are illustrated. Note that, in this scenario, both
the MLFMA and the DMLCSFMA show good performance
in practice. Moreover, the workload distributions for some of
the considered settings are shown in Fig. 12.

Fig. 13. Geometric settings of the ship model (a fleet of ships) and
corresponding MVP times. (a) Geometric settings. (b) MVP time.

Fig. 14. Distribution of the computational work for the ship model (a fleet
of ships). (a) Workload distributions EX1. (b) Workload distributions EX4.

2) A scenario consisting of a fleet of ships is considered.
The length and width of a single ship are denoted by A1 and
A2, respectively. Here, four cases corresponding to different
numbers of ships are studied, as depicted in Fig. 13(a). In par-
ticular, all the ships are arranged along a line (i.e., a single
dimension), with a separation distance of S0 between any two
adjacent ships. If the span of the fleet of ships along the direc-
tion of arrangement is denoted by S and such fleet of ships is
treated as a whole object, then such an object has the length S
and the width A1. When S is sufficiently larger than A1, such
an object can be viewed as an object of elongated shape. Since
A1 is fixed, the object shape then becomes more and more
elongated, as S increases (i.e., when more ships are involved).

Suppose that the number of ships considered is denoted
by MU . For the fleet of ships, the total number of unknowns
N is obviously proportional to MU . Moreover, the ships are
arranged along a line. Thus, as MU increases, N increases
linearly with respect to the span S. That is, the increase in
N is only caused by the increase in the object span along
a single dimension. Then, one can identify that the scenario
considered here matches the 1-D volume problem discussed
in Section IV-A. That is, for the four cases considered here,
the MVP times of the MLFMA should follow the O(N 2)

complexity, while that of the DMLCSFMA should follow
the O(N log N ) complexity. In Fig. 13(b), the resultant MVP
times of both algorithms are illustrated, and the numerical
results are in good agreement with the theoretical predictions.
Besides, the workload distributions for some of the considered
settings are shown in Fig. 14.

3) A scenario consisting of two aircraft is finally considered.
The length and width of a single aircraft are denoted by
A1 and A2, respectively. Here, four cases corresponding to
different central distance W̃ between the two aircraft are
studied, as shown in Fig. 15(a).

Obviously, as W̃ changes, the two aircraft remain unchanged
and the total number of unknowns N thus remains unchanged.
With this in mind, one can then identify that the scenario
considered here matches the 1-D surface problem discussed
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Fig. 15. Geometric settings of the aircraft model (two aircraft) and
corresponding MVP times. (a) Geometric settings. (b) MVP time.

Fig. 16. RCS results and solution times for the aircraft model (two aircraft).
(a) RCS EX1. (b) RCS EX4.

in Section IV-B. This implies that, as W̃ increases, the MVP
times of the MLFMA should ultimately follow the trend of
O(W̃ 2) complexity, while that of the DMLCSFMA should
follow the trend of O(1) complexity. In Fig. 15(b), the
resultant MVP times of both algorithms are illustrated. It can
be clearly seen that, as W̃ increases, the numerical results
approach the theoretical predictions, as expected. Besides,
in Fig. 16, the RCS results and solution times for the aircraft
model are illustrated. In particular, for the two cases consid-
ered, the solution times of the DMLCSFMA are reduced by
47.16% and 96.84%, respectively, compared with that of the
MLFMA. Hence, for this scenario, the improvement can be
very prominent.

C. Further Discussion

To gain further insight, the distribution of the computational
work across the involved levels in the MLFMA and the
DMLCSFMA are illustrated, in Fig. 12 for the rocket examples
and in Fig. 14 for the ship examples. It is seen that the reduced
costs of the DMLCSFMA (relative to the MLFMA) are mainly
attributable to the reduced costs at the relatively higher levels
(e.g., levels 2 and 3) where the boxes are relatively larger.
In contrast, at the relatively lower levels (e.g., levels 9 and
10) where the boxes are relatively smaller, the costs of both
algorithms are very similar, if not identical. These facts imply
that the (size)2 complexity of FMA is due to the expensive
and inefficient operations on the largest boxes, where a large
fraction of radiation directions are “wasted.”

VI. CONCLUSION

In this work, a DMLCSFMA is developed for accelerating
the calculation of the electrically large problems of vari-
ous dimensions. This algorithm implements a high-frequency
generalization of the conventional mid-frequency MLFMA.
In particular, a stable complexity of O(N log N ) can always
be achieved, for objects of different dimensional features.

Fig. 17. Illustration of the complex source of the GB pattern. Here, DD̂
defines the location of a real point source. The sources of the corresponding
GB lie on a circular disk (grey region) of radius 1, centered at DD̂, with
normal r̂mn . (a) Three-dimensional view. (b) Two-dimensional view.

Furthermore, being a spectral counterpart of the traditional
equivalent source-based D-FMAs, the proposed algorithm also
demonstrates the feasibility of building a plane wave-based
D-FMA. Both basic principles and implementation details are
thoroughly discussed.

Besides, this work potentially opens up new opportunities
to drastically upgrade the parallel efficiency of the state-of-
the-art parallel MLFMA [22], [23]. Effective parallelization
strategies of the MLFMA (such as the simple, the hybrid, the
hierarchical, and the ternary approach) [23] are closely related
to the ML structure of the MLFMA, and depend heavily on
the proper partitioning of the box-tree and the corresponding
group far-field patterns. Since the box-tree levels involved in
the DMLCSFMA are almost half of that of the MLFMA and
the far-field patterns involved are also sparsified, there should
be greater space for further optimization (especially on the
partitioning strategy), and improved parallel efficiency can
thus be expected.

APPENDIX A

Here, we give more detailed explanations of the asymptotic
behavior of the truncation length V mentioned in (14). To this
end, consider the following radiation pattern (i.e., GB pattern)
[42], [47]:

β
(
k̂, Dc

)
= e−ikk̂·Dc (54)

where Dc = DD̂ + i1r̂mn is a complex-valued spatial vector,
with D = 2R and 1 as suggested in (11). Here, the real
part DD̂ defines the location of a real point source, which
can be enclosed by a sphere of radius D. Meanwhile, the
imaginary part i1r̂mn induces the GB [43]. The sources of the
corresponding GB lie on a circular disk of radius 1, centered
at DD̂, with normal r̂mn , as shown in Fig. 17. It is known
that the above radiation pattern (54) can be expanded into a
spherical harmonics series [12], [47]. Then, a truncation length
NDc can be correspondingly determined for a given tolerance
ε. Note that this truncation length is also an indication of the
bandwidth of the radiation pattern.

Specifically, for a purely real point source D = DD̂
(i.e., without considering i1r̂mn), the corresponding truncation
length ND for a given ε can be determined by the smallest
integer that satisfies [12], [47]

|e−ik D k̂·D̂
−

ND∑
v=0

(2v + 1)i−vjv(k D)Pv

(
k̂ · D̂

)
| ≤ ε (55)

for arbitrary D̂. In this well-known case, a good closed-form
formula is available and is given by [15]

ND ≈ k D + C(k D)1/3 (56)
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where C = (−3 ln ε)2/3/2. Clearly, in this case, ND is roughly
linearly proportional to D.

However, for a purely imaginary source Di1 = i1r̂mn , the
corresponding truncation length Ni1 for a given ε is instead
determined by the smallest integer that satisfies [47]

|ek1k̂·r̂mn −

Ni1∑
v=0

(2v + 1)i−vjv(ik1)Pv

(
k̂ · r̂mn

)
| ≤ ε · ek1

(57)

for arbitrary r̂mn . It has been shown that Ni1 here fol-
lows a square-root relation with respective to 1, namely
[42], [47], [48]

Ni1 ≈ γ
√

k1 (58)

where γ = (−2 ln ε)1/2. Furthermore, using the idea of
physical equivalence, the above can also be rewritten as

Ni1 ≈ k · D̃i1, D̃i1 = γ

√
1

k
. (59)

Comparing (56) with (59), D̃i1 can thus be viewed as the real
effective radius corresponding to the purely imaginary source
Di1 = i1r̂mn .

Based on the above, by considering the composite radius
resulted from both D and D̃i1, the effective radius of the
sphere enclosing the general complex source Dc = DD̂ +

i1r̂mn can be further obtained as follows [42]:

D̃c =

√
D2 + γ 2 1

k
+ 2γ

√
1

k
D|sin ϑ | (60)

where ϑ is the angle between D̂ and r̂mn . It is noticed that the
above achieves the maximum when ϑ = ±π/2, i.e., D̂⊥r̂mn .
In this case, we have an upper bound of the effective radius
D̃c, namely

D̃sup
c = D + γ

√
1

k
. (61)

Consequently, an upper bound for NDc is thus given by [42]

N sup
Dc

≈ k D̃sup
c + C

(
k D̃sup

c

)1/3
(62)

which is obtained by replacing D in (56) with D̃sup
c in (61).

Besides, from the above, we can easily identify

N sup
Dc

≈ ND + Ni1. (63)

It is worth mentioning that such a conclusion can also be
reached straightforwardly from the perspective of the Fourier
relation, by noticing that

β
(
k̂, Dc

)
= β

(
k̂, D

)
· β
(
k̂, Di1

)
(64)

which implies that the bandwidth of the radiation pattern β

with the complex source Dc is the sum of the bandwidths with
a purely real source D and with a purely imaginary source Di1.

Interestingly, it is found that, using the 1 suggested in (11),
formula (61) can be further simplified, yielding

D̃sup
c = D + γ

√
σ · CQFF · (D/2)2

k
= ρ · D (65)

Fig. 18. Magnitudes of the translator function αmn and relevant subparts.
The magnitudes for both 1 = 0 and 1 = O(R2) are plotted. Moreover, the
relevant exponential part and the summation part are also shown above. Here,
the central distance between the source group n and the field group m is set
to rmn = fQFF(R) := CQFF · R2. Particularly, with the suggested 1 = O(R2),
the cut-off range 2δ of the spectral window is inversely proportional to the
group radius R, i.e., 2δ = O(1/R).

where ρ = 1 + γ /2 · (σ · CQFF/k)1/2 is a constant. The above
says, with the suggested 1, the corresponding upper bound
D̃sup

c is an explicit linear function of the real radius D, namely,
D̃sup

c ∝ D. Notice that here the suggested quadratic setting
of 1 with respect to D happens to balance out the intrinsic
square-root relation related to 1, thus producing an explicit
linear function of D. Then, substituting (65) into (62), we can
easily obtain

N sup
Dc

= O
(
D̃sup

c

)
= O(D). (66)

Moreover, it can be noticed that ND in (56) is actually a lower
bound of NDc . Hence, we also have

N inf
Dc

= ND = O(D). (67)

Consequently, considering the fact that N inf
Dc

≤ NDc ≤ N sup
Dc

and taking both (66) and (67) into account, we thus have

NDc = O(D) = O(R) (68)

where D = 2R, meaning that, similar to ND for the real point
source case, the truncation length NDc for the complex source
case is still of linear order with respect to D. Then, noticing
that the truncation length V is in principle characterized by
NDc [12], [42], [43], the asymptotic behavior of V is thus
obtained, which is V = O(R).

APPENDIX B

In the following, we study the expression of the windowed
translator function αmn in (9), in order to reveal the asymptotic
behavior of the spectral window.

To this end, referring to (10), consider the representative
far-field setting rmn = fQFF(R). In this case, according to (11),
the suggested choice of the beam parameter can also be
expressed as 1 = σ · rmn . Correspondingly, the expression
of the GB translator αmn in (9) can be rewritten as

αmn
(
k̂, rmn, 1

)
=

ik
4π

ek1(k̂·r̂mn−1)

W∑
v=0

iv(2v + 1)h̃(1)
v

(
k†rmn

)
Pv

(
k̂ · r̂mn

)
(69)

where k†
= k(1 + iσ). Interestingly, it can be noticed that

the summation part in (69) takes the form of the conventional
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translator (αmn with 1 = 0) with a lossy wavenumber k†,
and exhibits undecaying magnitude behavior similar to the
conventional translator, as shown in Fig. 18. Furthermore,
the magnitude of the windowed translator function αmn is
dominated by the exponential part ek1(k̂·r̂mn−1) in (69). Thus,
to yield an appropriate estimate of the asymptotic behavior of
the window for increasing R, we can proceed solely based on
this simple exponential factor.

Specifically, since cos 2 ≈ 1 − 22/2 for 2 → 0, the
exponential factor in (69) can be approximated as follows:

ek1(k̂·r̂mn−1) = ek1(cos 2−1)
≈ e−k122/2. (70)

Hence, for a given cut-off threshold δ, the range of the cut-off
window can be estimated by solving

e−k122
/

2
≥ δ. (71)

Then, substituting the suggested 1 of (11) into (71), we thus
arrive at

2 ≤ 2δ =
Cδ

R
= O

(
1
R

)
(72)

where Cδ = (−2 ln δ/(kσCQFF))
1/2 is a constant, which

means, with the suggested 1, the range of the cut-off window
characterized by 2δ is inversely proportional to R.

APPENDIX C

First, the value of CLFF is discussed. Here, the
commonly-used setting where the well-separated boxes are in
the nearest case one-box apart (i.e., 1-box buffer scheme [13])
is considered. For such a setting, the nearest central distance
between well-separated boxes is rmn = 2w, where w denotes
the width of the box. Accordingly, referring to (22), CLFF can
be obtained by solving 2 · w = CLFF · R, yielding

CLFF = 4/
√

3 ≈ 2.3094010767585 (73)

where the fact that R = (3)1/2w/2 has been used.
Then, we discuss a rule for choosing CQFF. Traditionally,

for the MLFMA, the width wL of the bottom level box is
given, which is commonly set to be around 0.2–0.5 λ. Around
such a scale, low-frequency physics begins to diminish and
mid-frequency wave physics begins to prevail. Here, for the
DMLCSFMA, we need to further specify the number of LFF
levels employed, i.e., PLFF. Correspondingly, the group radius
at the transition level L1 can be expressed as

RL1
= RL · 2L−L1 =

√
3

2
wL · 2L−L1 =

√
3

2
wL · 2PLFF . (74)

Recall that the crossover point (28) between the LFF and the
QFF is RM2H = CLFF/CQFF. To guarantee a smooth transition
from the highest LFF level (i.e., level L1 + 1) to the lowest
QFF level (i.e., level L1), it is suggested to make sure

RL1
= RM2H. (75)

With the above constraint, CQFF can be correspondingly deter-
mined, yielding

CQFF =
2CLFF

√
3wL · 2PLFF

. (76)

Generally, ray physics becomes prominent at the scale of
several wavelengths. Hence, if we choose wL = 0.2λ, then
setting PLFF = 4 can yield an appropriate transition level L1,
at which the group radius is RL1

= 3.2λ. Correspondingly,
in this case, we have CQFF ≈ 0.83. Note that this value is
very close to the estimate given in (21) derived from a different
perspective.

Next, we discuss the choice of σ . Roughly speaking,
the applicable range of σ can be derived from the con-
vergence condition of the complex-space extended addition
theorem [43]. Specifically, according to [43] and [45], the
upper bound of the applicable 1 is given by

1max =
r2

mn − D2

2D
(77)

where D = 2R. Moreover, from (11), we have σ = 1/rmn

with rmn = CQFF R2. Then, combining the above aspects, it can
be shown that

σmax =
CQFF R

4
−

1
CQFF R

. (78)

Notice that σmax in (78) is an increasing function of R. Thus,
to make sure a specified σ is valid for all possible R (i.e.,
R(l) where l = L1, . . . , 0), the minimum of σmax within the
considered range of R should be determined. Clearly, such
minimum is reached when R = RL1

. Considering that RL1
=

RM2H = CLFF/CQFF as suggested in (75), the minimum of
σmax is thus given by

σmax = σmax
(
RL1

)
=

CLFF

4
−

1
CLFF

. (79)

Finally, substituting CLFF in (73) into (79) above yields σmax =

(3)1/2/12 ≈ 0.1443. In practice, to maintain the numerical
stability [43], the σ adopted should not be too close to σmax.
Numerical experiments show that the estimate σ = 1/(2π2) ≈

0.05 given in (21) can be an appropriate choice and is adopted
in this article.
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