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Abstract— Two long-standing problems exist in the high-
frequency electromagnetic scattering analysis: 1) full-wave
methods suffer a geometric increase in computational costs,
along with the rising frequencies and 2) ray tracing methods
struggle to acquire sufficient phase information when dealing
with complex targets. To address these two issues, we propose a
phase-informed hybridizable discontinuous Galerkin (PI-HDG)
method for extremely high-frequency modeling. Similar to the
physics-informed machine learning algorithms, we integrate the
prior knowledge of phase information into the basis-function
construction in the PI-HDG algorithm, thus combining both
strengths from the HDG method and geometric optics ansatz.
Numerical experiments show that the PI-HDG algorithm can
accurately compute high-frequency scattering characteristics of
complex targets. Specifically, in a multiple scattering scenario,
we achieve only 1/10 temporal consumption while 1/16 for
the memory, when compared with the reference finite-element
software.

Index Terms—Discontinuous Galerkin (DG) method,
Helmholtz equation, high frequency, numerical discretization
scheme, phase information.

I. INTRODUCTION

UMERICAL modeling for electromagnetic scattering
characteristics plays an indispensable role in the realms
of antenna design [1], microwave imaging [2], and wire-
less communication [3]. Full-wave numerical methods typi-
cally require around 10-20 sampling points per wavelength
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(PPWs) [4] to ensure sufficient precision. The degrees of
freedom (DoFs) are around O (k?), where k is the wavenumber
and d is the ambient dimension. Moreover, the computational
complexity of the global system is about O(k3%/?) to O(k>?).
Therefore, these approaches encounter substantial computa-
tional demands, especially in the high-frequency modeling.
Nonetheless, even with a constant PPW, the error of numerical
results worsens as k increases. This extra k-dependent error,
known as the pollution error, further exacerbates the dilemma
in full-wave modeling [5], [6], [7].

Several alternative full-wave approaches have been
proposed to reduce the pollution effect, including the
generalized finite-element method [8], the continuous interior-
penalty finite-element method [9], and the interpolated
optimized finite-difference method [10]. These methods
either impose stricter conditions on mesh size or entail a
k-dependent polynomial approximation degree. On the other
hand, the discontinuous Galerkin (DG) method segregates
the entire computational domain into individual elements,
treating each one as a separate domain. This algorithm boasts
exceptional characteristics, such as high-order accuracy,
scalability, versatility, and robustness. Consequently, the DG
method has been effectively employed in applications for a
variety of multiscale and multiphysics problems, including
anisotropic poroelastic, elastic, fluid media [11], [12], [13], and
electromagnetic waves [14], [15], [16]. Moreover, Cockburn
and coworkers [17], [18] introduce the hybridizable DG
(HDG) method to reduce the unknowns further. Notably, [19]
demonstrates the preliminary capability of the HDG scheme
to eliminate the pollution error for the Helmholtz equation.

Since, in the high-frequency region, the nature of wave
propagation behaves like rays, various methods employ
ray theory to address the Helmholtz equation. Ray tracing
methods are a typical category of them, including geometrical
optics, the physical theory of diffraction, and the shooting
and bouncing ray methods. These approaches successfully
solve electromagnetic scattering problems from complex
objects [20], [21]. In addition, utilizing asymptotic expansion
methods, a range of algorithms aim to incorporate plane
waves into the full-wave basis functions, such as the
partition of unity finite-element methods [22], virtual element
methods [23], and ultraweak variational formulation [24].
However, the number of plane waves required is k-dependent.
This tremendously increases the computational cost and
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induces severely ill-conditioned global systems owing to the
linear-dependent basis functions [25].

It is noteworthy that scientific machine learning, integrating
prior physical knowledge into neural networks, exhibits its
superiority in real-time high-precision multiphysics modeling
of large-scale electronic chips [26]. Similarly, in the geometric
optics ansatz, phases and amplitudes are independent of the
frequency and can be extracted a priori. This inspires us
to incorporate this prior k-independent phase information
into full-wave modeling. For instance, [27] acquires phase
information by analytical formulation or solving the eikonal
equation, subsequently incorporating these known phases into
the basis functions. This phase-based method substantially
enhances both stability and accuracy with very low PPW in
typical cases [28]. Unfortunately, global phases computation
for complex targets remains a challenging task. Alternatively,
Fang et al. [29], [30] and Yeung et al. [31] acquire phase
information from the full-wave solution in the relatively low-
frequency region. This effectively enables its application in
complex scenario modeling. However, the former may suffer
from the pollution error due to the first-order basis function,
while the latter employs the interior-penalty DG method,
resulting in a larger number of DoFs.

Along this line, in this article, aiming at electromagnetic
scattering applications in the extremely high-frequency region,
we present a phase-informed hybridizable DG (PI-HDG)
method. We enhance the basis functions by incorporating
phase information from solutions in the relatively low-
frequency region. These phase-informed basis functions effec-
tively capture the oscillatory components of the Helmholtz
equation solution. Therefore, the PI-HDG method demands
fewer DoFs to achieve the equivalent accuracy.

The innovations delivered from this article are summarized
as follows.

1) The PI-HDG method integrates the HDG methodology
with a geometrical optics ansatz, continuing to leverage
the superior accuracy and efficiency of the HDG method
in high-frequency modeling.

2) We adopt a phase extraction technique to establish
the relationship between wave fields in the low- and
high-frequency regions. This enables us to obtain more
comprehensive phase information, even when dealing
with complex targets.

3) In the asymptotic expansion, we employ the gradient
of phase (the wave propagation direction) rather than
the phase itself. This effectively alleviates the problem
posed by highly exponential oscillatory integrals.

This article is organized as follows. Section II elaborates the
implementation details of the phase-informed HDG method for
the Helmholtz equation. Section III shows numerical experi-
ments, corroborating the stability, convergence, accuracy, and
efficiency. Section IV gives conclusions.

II. NUMERICAL FRAMEWORK

A. Relationships Between the Maxwell’s Equations and the
Helmholtz Equation

It is well established that electromagnetic wave propagation
problems in the frequency domain can be commonly expressed
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using time-harmonic Maxwell’s equations as follows:
VXE=—jouH
VxH=]+ jocE )
V.¢eE=p
V-uH =0

where E and H represent the electric- and magnetic-field
intensities, respectively; J stands for electric current density;
p for electric charge density; ¢ and p are the permittivity and
permeability, respectively; j denotes the imaginary unit; and
w signifies the angular frequency.

In high-frequency modeling, the focus is primarily on
Faraday’s law and Ampere’s law, which correspond to the
first two equations within (1). The integration of Faraday’s
law with Ampere’s law leads to

V x (Vx E) — o*usE = —jourd. 2)
Equation (2) can be further expressed as follows:

V(V-E)-V?E —K*E=f (3)

Helmbholtz equation

with the spatially dependent wavenumber k, where k> = w” e
and f represents the source term. By neglecting the first term
on the left-hand side, we derive the Helmholtz equation, which
holds true in 2-D TE-wave scattering scenarios.

In Cartesian coordinates, each component of the electric-
field intensity satisfies the scalar Helmholtz equation as
follows:

—Au — kK*u = f 4

where u and f are one of the three components of the
electric-field intensity and source term, respectively.

B. Asymptotic Expansions of the Helmholtz Equation

Classical ~direct algorithms face extremely high-
computational costs in high-frequency modeling, while
asymptotic methods, by analytically addressing the Helmholtz
equation, exhibit superior effectiveness. The standard
derivation of the geometric optics ansatz employs the
Luneberg-Kline expansion [32, p. 93] to express the solution
of the Helmholtz equation as follows:

u(x) ~ ko™ Z —AZ(ZX) . 5)
=0

By taking k — oo and focusing solely on the first term,
we obtain

u(x) = A(x)e**™® 4 o(%) (6)

where A(x) is the first term of A,(x), commonly referred
to as the amplitude and @(x) as the phase. The essential
characteristics of the geometric optics ansatz are as follows.
1) A(x) and ¢(x) are independent of the wavenumber k.
2) A(x) and ¢(x) depend on the medium material and the
excitation source.
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Nonetheless, a notable constraint of the asymptotic expan-
sion (6) is its ability to capture single-phase wave fields.
While, in general, the phase function ¢(x) and the amplitude
function A(x) are multivalued functions corresponding to mul-
tiple wavefront arrivals [33]. Consequently, the single-phase
geometric optics ansatz (6) can be further deconstructed into
a superposition of multiple wavefronts, taking the form

N(x)

u®) = > {A, e o™} 4 0(%) )

n=I

where N (x) is the number of wavefronts, and the phases ¢, (x)
and amplitudes A, (x) are single-valued functions correspond-
ing to the nth wavefront.

Note that (7) divides the solution into two components: the
frequency-related component, denoted as k, and the frequency-
independent components, denoted as A,(x) and ¢,(x).
Inspired by such characteristics, provided that we obtain the
phases ¢,(x) a priori, we can solely concentrate on the
computation of the amplitudes A, (x). In addition, this method
is more effective in the high-frequency region due to smaller
asymptotic expansion errors, as shown in (7).

Based on the above geometric optics ansatz, we can derive
a local plane wave approximation at any point. Indeed, using
Taylor expansions on a small neighborhood around an obser-
vation point X, we have

e*en ™ — k(@ (X0)+Veu (o) (X—X0))

— k@00 =Y, (x0)%0) _ iKY, (x0)x (8)
Substituting (8) into (7), and neglecting the error term,
we obtain

N(x)

u(x) = » {B,(x)e* ™} ©)

n=1
with
B, (x) = A, (X)eik(‘p” (X0) =V (X0)X0)

o (X) = Vg, (Xo) - X (10)

where B, (x) is the extended amplitude and p,(x) is the wave
propagation direction of the nth ray at xo. Note that the
subscript n is necessary to ensure [, (x) changes slowly, since
the rays at xo may diverge fast when near the source or in the
multiple reflection scenario.

It is remarkable that in high-frequency modeling, due
to (9), we inevitably have to compute highly oscillatory
integrals involving exponential functions [34], [35]. In our
subsequent procedures, (32) and (33) also encounter this
issue. Fortunately, since we perform the local plane wave
approximation, p,(x) can be considered to change slowly
within a small neighborhood. This effectively alleviates the
oscillations in integrals.

Based on the above analysis, we present the flowchart of
the numerical framework, as shown in Fig. 1.

1) We first use the full-wave HDG method to compute the

wave field u(x) in the relatively low-frequency region,
as detailed in Section II-C.
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Fig. 1. Flowchart of the numerical framework.

2) Subsequently, we introduce the numerical microlocal
analysis (NMLA) method to extract the wave prop-
agation directions w,(x) from the full-wave solution,
as detailed in Section II-D.

3) Then, based on (9), we construct the phase-informed
basis functions and compute the wave field u(x) in the
high-frequency region, as detailed in Section II-E.

4) We compare the phase difference between two solutions
and repeat steps 2) and 3) until convergence. Finally,
we perform postprocessing to obtain the field distribu-
tion and radar cross section (RCS).

C. Full-Wave HDG Method in the Low-Frequency Region

In order to obtain the wave propagation directions pu,(X)
in (9), we first use the full-wave HDG method to compute the
wave field u(x) in the relatively low-frequency region. Note
that the full-wave solution involves abundant phase informa-
tion for the computational domain with complex objects.

Within a finite region €2 and its boundary 9€2, the Helmholtz
equation reads

in
on 02

—Au — kl2fu = f,

n'Vu+iBku =g, (11)

where kj¢ is the inhomogeneous wavenumber in the relatively
low-frequency region, f denotes the source, and n is the
outward normal vector. Note that the second equation is the
Sommerfeld radiation condition. 8 and g are the boundary
data determining the boundary types. Specifically, the Dirichlet
boundary I'p corresponds to 8 = oo, the Neumann boundary
'y corresponds to § = 0, and the first-order absorbing
boundary I'p to B = 1 and g = 0. In addition, it is worth
mentioning that the boundary in (11) can be readily replaced
with perfectly matched layers (PMLs) [36].
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Note that (11) represents a second-order partial differential
equation (PDE) concerning the variable u. Subsequently,
we introduce an intermediate variable ¢, yielding two
first-order PDEs

q—Vu=0, inQ
—V-q—klzfuzf, in Q
n'q+iBkgu =g, ondQ. (12)

Now, consider partitioning €2 into n. disjoint subdomains as
follows:

Ne
Q= U Q) (13)
h=1

with the union of inner interfaces I'; defined as follows:

r, = U 9€2,\9%2 (14)
h=1
where 0€2;, denotes the boundary of €2.
Subsequently, we establish governing equations at an ele-
ment level as follows:
qh—vuhZO, in Qh
—V - q;, — ki, = fi,

with boundary conditions on 0€2, at the element level as
follows:

in Q, (15)

up = it\h
g, =G, (16)

It is worth noting that two new variables u), and ¢q, are
introduced, acting as new boundary conditions on 9€2;,.

Note that u; and ¢, can be obtained locally through (15)
and (16), referred to as the local problem. This aligns closely
with the classical DG method.

However, the HDG discretization is not yet finalized,
since (16) solely addresses the problem at an element level,
lacking global connectivity across different elements.

Therefore, it is imperative to establish global connections
across adjacent elements on the mesh skeleton I'. Specifically,
the inner continuity conditions and the outer boundary condi-
tion for variable & and ¢ on the mesh skeleton I' are defined
as follows:

[n"4], =0, on Vyel,;
[n"g], =0, on VyeTly
n'g+ipkgi=g, on 9Q (17)
where
[n" 0], =n/0; +nv; (18)

is a jump operator across an inner interface y shared by two
neighboring elements 2; and ; n/ denotes the outer normal
vector for 0€2;; and ©; refers to a variable, either scalar or
vector, in the element ;.

It should be emphasized that the HDG method transfers
elemental boundary conditions (16) into global governing
equations (17) on the mesh skeleton I'. This is the unique
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property that the classical DG method does not have, referred
to as the global problem.

The numerical flux connecting two interface variables @,
and uy, is expressed as follows:

n'q,—n'q, =1, — up) (19)

where T denotes a stabilization parameter, notably influencing
the accuracy, stability, and convergence of the results [16],
[37], [38]. Here, we choose the stabilization parameter as
follows [27]:

T = iklf. (20)

Afterward, the HDG method employs polynomial approxi-
mation spaces V,, Wj,, and M, for the classical basis functions
as follows:

Vi =tXx)

Wi == w(x)

M = p(x). @D
In a single element 2;, for » = 1,...,n,, we construct

the local problem in the HDG method by testing (15) with
VteV,and Yw € Wy, and computing integral by parts with
the Gaussian divergence theorem as follows:

(t.44)g, + (V- toun)g, — (0t W)y, =0
—(w, ”T/q\h>ag,, + (Vw, qh)m - (w. kiun)g, = (@, fig,-
(22)

Note that by employing the numerical flux (19), we can
eliminate q,. Consequently, two local dependent variables,
u, and g, can be solved at the element level, provided that
uy, is known.

On the mesh skeleton I', we construct the global problem
in the HDG method by testing (17) with Vu € Mh, and
computing surface integrals on the mesh skeleton I" as follows:

Ne

Z{(u, n'qy)sq, + (s T — un))ag, + (K, iﬂklfﬁh)agh}
h=1

= Z{(M g)asz}
h=1

where the global problem has been divided into an accumu-
lation of surface integrals in n. local elements. Note that two
local dependent variables u; and ¢, in (23) can be eliminated
through the local equation (22).

We should note that the HDG method shows superior stabil-
ity, convergence, and efficiency compared with the traditional
numerical methods, such as the finite-difference method and
the finite-element method [27], [39].

(23)

D. Phase Extraction Technique

Subsequently, we introduce a phase extraction technique to
determine the wave propagation directions, denoted as , (X)
in (9), from the full-wave solution in the low-frequency region.
We would like to introduce the NMLA method, since it offers
a simpler and more robust approach [40].
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The fundamental assumption in the NMLA method is
that a wave field u(x) can be locally approximated as a
superposition of plane waves with different propagation
directions. Specifically, on a small neighborhood around an
observation point Xy, we have

L
u(x) = D Bt td g, | =1 (24)
m=1

wherg L is the number of plane waves, B, is the magnitude,
and d,, = (cosé&,,sin§,) is the wave propagation direction
corresponding to the mth plane wave. &, is the corresponding
angle.

In particular, consider a circle with the radius r centered
at Xo, and introduce the angle notation 6; the point on the circle
can be expressed through the polar coordinates as follows:

x(0) = xo + rs(0) (25)
where S(0) = (cos 8, sinf). The wave field u(x(9)) on the
circle can be further stated as follows:

L
u(x(0)) = D Bue %,

m=1

(26)

Subsequently, we sample the impedance quantity /(6) on
the circle as follows:

1(0) = %a,u(x(e)) + u(x(6)) 27
where 0,u(x(0)) is the derivative of the wave field u(x(6)).
Note that I (6) effectively eliminates any potential ambiguity
due to resonance and enhances the robustness of solutions in
the presence of noise [40].

Actually, in our numerical framework, the wave field
u(x(0)) and its derivative d,u(x(0)) have been computed in
Section II-C. Therefore, the sampling procedure (27) is a
postprocessing procedure, and the computational cost can be
considered negligible.

We further apply the filtering operator B to process the
impedance quantity /(6), which can be expressed as follows:

L
BI1(9) = Z B Si(0 — &) (28)
m=1
with
S1(0) = sin([2] + 1]16/2) 29)

[20 + 1]sin(0/2)"

Finally, at an observation point Xy, we can determine the
wave propagation directions w,(Xo) as follows:

fn(X0) = 6, n=1,2,... (30)

where BI(0,) is the local maximum in the filtered data (28).
It should be emphasized that the NMLA method is essentially
a signal-processing method, since it extracts the wave propa-
gation directions u,(Xg) at Xy by sampling and processing the
wave field u(x(0)). More details of the NMLA method can be
referred to [40] and [41].
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E. Phase-Informed HDG Method in the High-Frequency
Region

Now, we step into the PI-HDG discretization. In a single
element €2;,, we have obtained the elemental phase information
on(x) from Section II-D, which is the set of u,(xg) within
the element. Then, the local approximation spaces Vj, W/,
and M » for the phase-informed basis functions are defined as
follows:

Vi, = t(x)exp(iknpy (X))
W, = w(x)exp(iknrpn (X))

M = p(x)exp(iknegn (X)) 31)

where the amplitude values ¢(x), w(x), and w(x) are derived
from finite-dimensional polynomial spaces V,, W;, and 1\7;,
in (21), respectively, and kys is the wavenumber in the high-
frequency region.

It is remarkable that these novel local approximation spaces
defined in (31) incorporate prior physical information from the
low-frequency solution. This allows us to focus primarily on
the computation of amplitudes.

Now, we are ready to describe our PI-HDG numerical
scheme of the Helmholtz equation through the proposed
phase-informed basis functions. We find (g, up, i) €
Vi x Wi x M}f, such that the following equations:

(t*, qh)Qh + (V . t*, uh)Qh - (nTt*vit\h%Qh
=0—(w*, 0"y}, + (V0*, q5) g, — (", ki),

= W", fie, (32

with boundary condition

Ne

Z{(H‘*’ anh)BQh +(/~'L*3 T(ﬁh - uh))agh +<,LL*, i/gkhf’u\h)agh}
h=1

= > {0 el

hold for all (¢*, w*, u*) € Vi x W x M;.

The weak formulation of the PI-HDG method, as expressed
in (32) and (33), closely resembles that of the full-wave HDG
method, outlined in (22) and (23). The primary distinction
lies in the approximation spaces. This dissimilarity renders
the PI-HDG method notably superior in both accuracy and
efficiency compared with the classical full-wave method in
the high-frequency modeling [27].

(33)

III. NUMERICAL EXPERIMENTS

A. Analytical Solution for the Helmholtz Equation

We begin with an analytical example in order to illustrate
the accuracy, convergence, and especially extensibility of the
proposed method. We consider the Helmholtz equation (11) in
asquare Q = [—1, 1] x [—1, 1] € R? with a Robin boundary
condition as follows:
on 9€2.

Vu-n+iku = gg, (34)
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(b)

(a) Result of u in k = 1000 (A = 6.28 x 1073) by the PI-HDG method, where the mesh size 1 = 1/16 and the polynomial degree p is 1; the

L2-norm error is 1.92 x 1073. (b) Local magnification at [0.7, 1] x [0.7, 1], with more than 47 wavelengths in the region (units have been normalized).

Here, we choose the source term f and boundary data gg,
such that the problem has the following exact solution:

Uex = A(x, y)exp(ikg(x, y)) (35)

with A(x, y) = exp(x +y) and ¢(x, y) = (1/2)x + (+/3/2)y.
Note that (35) is identical in form to asymptotic expansion (6),
making it highly suitable for testing the fundamental proper-
ties. We consider polynomial degrees p = 1 — 4 using nodal
basis functions within each element, for space discretization.
The L?-norm error is defined as follows:

llu — uref||2
Uepr = —F———

(36)
”ure f ”2

where u and u,.r are the column vectors composed of the
numerical result and analytical (reference) result, respectively.

1) Convergence Test: We first test the convergence of the
PI-HDG method. We consider triangular meshes with mesh
sizes of h = 1/2"(n = 1,2,3,4) and the wavenumber
k = 1000 (the wavelength A = 6.28 x 1073). Fig. 2(a)
gives the result of u where the mesh size 4 = 1/16 and the
polynomial degree p is 1; the L?>-norm error is 1.92 x 1073,
Fig. 2(b) provides local magnification at [0.7, 1] x [0.7, 1],
with more than 47 wavelengths in the region. Fig. 3 shows the
convergence of the L%-norm error u,,,, as a function of the
characteristic mesh size h, for polynomial degrees p = 1 —4.
Fig. 3 shows that the PI-HDG method maintains the optimal
convergence of order p+1 as the classical HDG scheme [18].

2) Extensibility Test: On the same mesh size, we further test
the growth rate of the L2-norm error as k increases. We use
512 triangular elements in the computational domain with
polynomial degrees p = 1-4. We consider the wavenumber k
from 10° to 10* (the wavelength ) from 6.28 to 6.28 x 107%).
Fig. 4 shows the relationship between the L2-norm error u,,
and the wavenumber k. Because of phase-informed basis
functions, the L2-norm error remains almost unchanged. It also
validates that the proposed method alleviates the problem of
highly exponential oscillatory integral computation. Of course,
this is the most ideal scenario, as the phase information is

0
2+ ,
-
§ 4f 1
=
N’
>
ob
Ea
8t _
_10 1 L 1 L
-1.2 -0.9 -0.6 -0.3
log, ()
Fig. 3. Convergence of the L2-norm error Uerr, as a function of the

characteristic mesh size h, for polynomial degrees p = 1 — 4, where the
wavenumber k = 1000 (the wavelength A = 6.28 x 1073).

known, and the asymptotic expansion (6) agrees with the exact
solution.

B. Plane Wave Scattering From a Square Target With One
Jagged Edge

This example aims to consider scenarios involving multiple
reflections. We consider the exterior Helmholtz problem for
scattering of an incident plane wave u™ = exp(ikx) by a
square target with one jagged edge. Note that we adopt the
scattering field as the unknown variable; thus, the Dirichlet
boundary condition is expressed as u = —u'™ on each edge
of the square target and the Robin boundary condition as Vu -
n + iku = g on the boundary of the computational domain.
Here, the boundary data are obtained as g = 0, representing
the first-order absorbing condition.

Fig. 5 presents the ray trajectories obtained by the COM-
SOL software with the ray optics module [42], and the color of
rays represents the optical path length. It can be observed that
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TABLE I
CALCULATION SCALE AND RESOURCE CONSUMPTION BETWEEN TWO METHODS IN k£ = 100

Element number Basis order PPW Global DoFs Solving time Memory peak Error
FEM 1917537 2nd 20.94 3839247 483 s 32.9 GB 3.03%
PI-HDG 39659 2nd 3.14 237954 45 s 2.0 GB 2.78 %

lOglO(uerr)

log, (k)

Fig. 4. L?-norm error of the PI-HDG method remains almost unchanged as
k increases from 10° to 10* (X from 6.28 to 6.28 x 10~%).
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Fig. 5. Ray trajectories and optical path length obtained by the COMSOL
software with the ray optics module [42]. Only the reflected rays are
calculated, lacking sufficient phase information.

only the reflected rays are calculated. Obviously, this phase
information is insufficient. While some literature, such as [43],
proposes analytical methods for diffraction rays computation,
there have been persistent issues regarding universality. There-
fore, we prefer to extract the wave propagation directions
based on the full-wave solution in the low-frequency region,
since it involves abundant phase information.

In the low-frequency full-wave computation, we consider
triangular meshes with the mesh size 7 = 0.04 m, the
polynomial degree p = 2, and the wavenumber £ = 10 (the
wavelength A = 0.628 m). The PPW is defined as follows:

Ap  2mp
PPW = — = —. 37
h kh 37)

Therefore, the PPW in the low-frequency region is 31.42.
Here, the PPW is slightly higher than the rule of thumb,
allowing us to obtain a more accurate solution in the low-
frequency region. Fig. 6(a) shows the result of the scattering
field by the PI-HDG method in the low-frequency region
where k = 10 (A = 0.628 m). We also compare our result with
the commercial software COMSOL, which uses the full-wave
FEM method. The mesh size & = 0.005 m, the polynomial
degree p = 4, and the PPW is 502.65. Fig. 6(b) gives the
full-wave reference result. Fig. 6(c) gives the absolute error
(with ten times magnification) of the scattering field between
two methods, and the L?-norm error is 1.05 x 1073.

Afterward, on the low-frequency mesh, we evaluate the
performance in the high-frequency region. Fig. 7(a) gives
the result of the scattering field by the PI-HDG method in
the high-frequency region where £k = 100 (A = 0.0628 m).
Fig. 7(b) gives the full-wave reference result. Fig. 7(c) gives
the absolute error of the scattering field between two methods,
and the L?-norm error is 2.78 x 1072. Since we adopt the
same mesh size 2 = 0.04 m and polynomial degree p = 2 as
in the low-frequency region, the PPW here is 3.14, remarkably
less than the rule of thumb. Table I gives the calculation
scale and resource consumption between two methods under a
similar error level in k& = 100. It highlights that compared with
the full-wave FEM software, the temporal consumption of the
PI-HDG method is only 1/10, while the memory is 1/16.
In particular, the computation in the low-frequency region
takes 19.5 s, the phase extraction step takes 3.4 s, and the
computation in the high-frequency region takes 22.2 s, while
we ignore the I/O cost. We emphasize that by employing
appropriate parallel schemes, the cost of phase extraction can
be further reduced. Therefore, the cost incurred in the numer-
ical framework is approximately two times the computation
cost in the low-frequency region.

Fig. 8 shows the bistatic RCS calculated by the PI-HDG
method and the COMSOL software in the low- and high-
frequency regions, respectively. The root-mean-square error
(RMSE) is defined as follows:

1
RMSE(dB) = \/ﬁ Z lo — Orer|? (38)
where N is the number of sample points, and o and o,.r
are the RCS results by the PI-HDG and full-wave FEM
method, respectively. The RMSE between two methods in the
log scale in the low-frequency region is 0.02 dB, while the
high-frequency region is 1.45 dB.

C. Plane Wave Scattering From a Dielectric Circle

This example aims to consider scenarios involving an
inhomogeneous object. We consider the exterior Helmholtz
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Scattering Field by PI-HDG in k = 10 (V/m) Scattering Field by COMSOL in k = 10 (V/m) Absolute Error (10 times) in k = 10 (V/m)
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Fig. 6. Result of the scattering field by (a) PI-HDG method and (b) full-waveform COMSOL software in the low-frequency region where k = 10, with more
than seven wavelengths in the region. (c) Absolute error (with ten times magnification) between (a) and (b), and the L2-norm error is 1.06 x 1073.

Scattering Field by PI-HDG in k = 100 (V/m) Scattering Field by COMSOL in k = 100 (V/m) Absolute Error in k = 100 (V/m)
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Fig. 7. Result of the scattering field by (a) PI-HDG method and (b) full-waveform COMSOL software in the high-frequency region where k = 100, with
more than 79 wavelengths in the region. (c) Absolute error of the scattering field between (a) and (b), and the L2-norm error is 2.78 x 1072.

Radar Cross Section in k = 10 (dBm) Radar Cross Section in k = 100 (dBm)
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Fig. 8.  Bistatic RCS by the PI-HDG method and the full-waveform COMSOL software in (a) low-frequency region where k = 10 (Fig. 6) and
(b) high-frequency region where k = 100 (Fig. 7).

problem for scattering of an incident plane wave u#™ = Dirichlet boundary inside, we use the total field as the
exp(ikx) by a dielectric circle with a radius of 0.5 m. unknown variable; thus, the Robin boundary condition is
The relative permittivity increases linearly from 1 to 9 as Vu - n + iku = 0 on the boundary of the computational

the radius decreases from 0.5 to 0 m. Since there is no domain.
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Scattering Field by PI-HDG in k = 100 (V/m) Scattering Field by COMSOL in k = 100 (V/m) Absolute Error in k = 100 (V/m)
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Fig. 9. Result of the scattering field by (a) PI-HDG method and (b) full-waveform COMSOL software in the high-frequency region where k = 100, with

more than 79 wavelengths in the region. (c) Absolute error of the scattering field between (a) and (b).
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Fig. 10. Bistatic RCS by the PI-HDG method and the full-waveform COMSOL software in (a) low-frequency region where k = 15 and (b) high-frequency

region where k = 100 (Fig. 9).

We consider triangular meshes with the mesh size 7 =
0.04 m and the polynomial degree p = 3. The wavenumber
in the low-frequency region is k = 15 (the wavelength \ =
0.4188 m).

Fig. 9(a) gives the result of the scattering field by the
PI-HDG method in the high-frequency region where k = 100
(A = 0.0628 m). Fig. 9(b) gives the full-wave reference
result, where the mesh size 2 = 0.005 m and the polynomial
degree p = 5. Fig. 9(c) gives the absolute error of the
scattering field between two methods. The PPW here is
4.71, less than the rule of thumb. Fig. 10 shows the bistatic
RCS calculated by the PI-HDG method and the COMSOL
software in the low- and high-frequency regions, respectively.
The RMSE between two methods in the log scale in the
low-frequency region is 0.02 dB, while the high-frequency
region is 3.22 dB. Despite the relatively large absolute
error, the RCS agrees well, because it requires less field
information. We will adopt the scattering field as the unknown
variable to enhance phase extraction accuracy in future
work.

D. Plane Wave Scattering From an Airplane

Sections III-A-III-C demonstrate the convergence, accuracy,
and efficiency of the proposed algorithm. This example further
considers a more realistic scenario. We consider the exterior
Helmholtz problem for scattering of an incident plane wave
u™ = exp(ikx) by an airplane. The computation area is
50 x 50 m?. Note that we adopt the scattering field as the
unknown variable; thus, the Dirichlet boundary condition is
expressed as u = —u™™ on the surface of the airplane, and the
Robin boundary condition is Vu-n+iku = g on the boundary
of the computational domain. Here, the boundary data are
obtained as g = 0, representing the first-order absorbing
condition.

In the low-frequency full-wave computation, we consider
triangular meshes with the mesh size 7 = 0.06 m, the
wavenumber k = 4, the polynomial degree p = 3, and the
PPW is 25. The computational domain contains 100 wave-
lengths, since the wavelength A = 0.5 m.

Fig. 11(a) gives the result of the scattering field by the
PI-HDG method in the low-frequency region where k = 4.
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Scattering Field by PI-HDG in k = 47 (V/m)
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(a) Result of the scattering field by (a) PILHDG method and (b) full-waveform COMSOL software in the low-frequency region where k = 4,
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Fig. 12.

(@

(a) Scattering field distribution by the PI-HDG method in & = 40m, with 1000 wavelengths in the region. The mesh size is 0.06 m, the polynomial

degree is 3, and the PPW is 2.5. (b)—(d) Local magnification at [—10, —5] x [5, 10] m2, [—1,4] x [—6, —1] m?, and [7, 12] x [—2.5,2.5] m?, respectively.

We also compare our result with the commercial software
COMSOL. The mesh size & = 0.04 m and the polynomial
degree p = 5, and the PPW is 62.5. Fig. 11(b) gives the

full-wave reference result. Fig. 11(c) gives the absolute error
(with ten times magnification) of the scattering field between
two methods, and the L%-norm error is 8.72 x 1073,
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Fig. 13.

We further validate the extensibility of the proposed
algorithm. Fig. 12(a) gives the result of the scattering field by
the PI-HDG method in the high-frequency region where k =
407 . Note that the computational domain contains 1000 wave-
lengths, since the wavelength A = 0.05 m. Fig. 12(b)—(d)
provides local magnification at [—10, —5] x [5, 10] m?,
[—1,4] x [—6, =11 m?, and [7, 12] x [—2.5, 2.5] m?, respec-
tively. Besides, Since we adopt the same mesh size 4 = 0.06 m
and polynomial degree p = 3 as in the low-frequency region,
the PPW here is 2.5, remarkably less than the rule of thumb.

Fig. 13(a) shows the bistatic RCS calculated by the PI-HDG
method and the COMSOL software in the low-frequency
region where k = 4. The RMSE between two methods in
the log scale is 0.21 dB. Fig. 13(b) gives the RCS calculated
by the PI-HDG method in the high-frequency region where
k=40m.

Furthermore, upon comparing the field distributions in
Figs. 11(a) and 12(a), as well as the magnitude of the RCS
in Fig. 13(a) and (b), we observe that the low-frequency
results exhibit wave-like propagation characteristics, while
the high-frequency results exhibit ray-like behaviors. This is
aligned with the theory of the geometric optics ansatz.

IV. CONCLUSION

In this article, a PI-HDG method is presented for extremely
high-frequency wave modeling. We integrate the prior knowl-
edge of phase information into the construction of basis
functions, thereby leveraging the strengths of both the HDG
method and geometric optics ansatz. We extract the phase
information based on the full-wave solution in the relative
low-frequency region, since it involves abundant phase infor-
mation. Rigorous analytical solutions demonstrate that optimal
orders of convergence are achieved in the proposed algorithm.
Furthermore, we achieve high-frequency scattering analysis of
complex targets on the low-frequency mesh. Numerical results
show that the temporal consumption is only 1/10, while the
memory is 1/16, when compared with the reference finite-
element software.
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