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Abstract: Compared with a single-input-single-output (SISO) wireless communication system, the
benefit of multiple-input-multiple-output (MIMO) technology originates from its extra degree of
freedom (DOF), also referred to as scattering channels or spatial electromagnetic (EM) modes, brought
by spatial multiplexing. When the physical sizes of transmitting and receiving arrays are fixed
and there are sufficient antennas (typically with half-wavelength spacings), the DOF limit is only
dependent on the propagating environment. Analytical methods can be used to estimate this limit in
free space, and some approximate models are adopted in stochastic environments, such as Clarke’s
model and Ray-tracing methods. However, this DOF limit in a certain inhomogeneous environment
has not been well discussed with rigorous full-wave numerical methods. In this work, volume integral
equation (VIE) is implemented for investigating the limit of MIMO effective degree of freedom (EDOF)
in three representative two-dimensional (2-D) inhomogeneous environments. Moreover, we clarify
the relation between the performance of a MIMO system and the scattering characteristics of its
propagating environment.

Keywords: MIMO system; degree of freedom; inhomogeneous Green’s function; volume integral
equation; correlation

1. Introduction

Based on the Shannon’s information theory [1], multiple-input-multiple-output (MIMO)
technology in wireless communications has achieved great success over the last twenty
years [2], along with the emerging massive [3], reconfigurable-intelligent-surface (RIS) [4,5]
MIMO and holographic [6,7] MIMO systems. As electromagnetic (EM) wave is the physical
carrier of information, the capacity bound of a space-constrained MIMO system from an EM
perspective deserves to be investigated for exploring and examining the emerging MIMO
technologies.

The degree of freedom (DOF) of a MIMO system refers to the rank (number of signifi-
cant eigenvalues) of its correlation matrix [8], or the number of scattering channels [9] or
spatial EM modes [10], which shows a clear physical meaning. DOF indicates the benefit
brought by MIMO technology and is frequently used for characterizing the performance of
a MIMO system. A more convenient figure of merit used in the MIMO system is the effec-
tive degree of freedom (EDOF) [11–13], which approximately characterizes its equivalent
number of single-input-single-output (SISO) systems. The EDOF is directly related to the
capacity and is easy to calculate.

The DOF/EDOF limit has been discussed in several research works, which can be
roughly classified into mode-based and channel-based analyses. For the mode-based
analysis, the DOF limit is intuitively calculated by counting the available EM modes in a
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constrained spatial or angular domain, including the DOF limit between two planes in free
space [14], between one plane and half-space[15] and in Rayleigh environment [6,16,17].
For the channel-based analysis, the channel matrices are constructed with some empirical
or EM methods, then the DOF/EDOF can be obtained through singular value decompo-
sition (SVD), including the MIMO channels based on traditional models [18,19] (Clarke,
Kronecker, etc.), EM Green’s function [20–23], full-wave simulation [24,25], and dyadic
Green’s function in free space [13]. Particularly, the communication channels have been
investigated with various EM methods, such as the numerical parabolic equations for
tunnels [26], stochastic Green’s function for stochastic environments [27], ray-tracing meth-
ods [28] and some approximate models for the environment with finite scatterers [29–32].
These works provide some useful results for the DOF/EDOF of MIMO systems in free
space and stochastic environments. Nevertheless, for some representative inhomogeneous
environments, the impacts of their scattering characteristics on the performance of a MIMO
system are not well investigated with numerical methods.

In this work, three main contributions are made. First, we provide an explicit deduc-
tion and explanation of the EM foundation of a MIMO system. Second, three representative
numerical examples are given by using the two-dimensional (2-D) volume integral equation
(VIE), the MIMO performances in these environments have not been discussed with EM
numerical methods before. Third, the relation between the performance of a MIMO system
and the scattering characteristics of the 2-D inhomogeneous environment is clarified. This
paper demonstrates a simple but representative application of computational electromag-
netic methods in wireless communications. The proposed model is particularly useful for
evaluating and exploring the performance limit of MIMO systems in various deterministic
environments which cannot be well modeled by empirical methods.

2. Methodology
2.1. EM Model for Analyzing EDOF Limit

If there are amounts of scatterers in the propagating environment, the strengths of
signals going through this environment will follow a statistical model due to the central
limit theorem, and the effect of specific physical properties, such as the size and shape of
scatterers, are insignificant. These statistical models are generally applicable to various
scenarios, which largely simplifies the modeling task of a communication system. However,
for a few scatterers, these models are not applicable, and the scattering characteristics of
the scatterers need to be taken into account with rigorous numerical methods.

We consider a general MIMO model in an isotropic inhomogeneous environment
with homogeneous permeability µ and inhomogeneous permittivity ε(r) characterizing
arbitrary scatterers, as depicted in Figure 1. A set of NS transmitting antennas at the
positions rSn(n = 1, . . . , NS) are distributed in the source volume, NR receiving antennas at
the positions rRm(m = 1, . . . , NR) are distributed in the receiving volume. The transmitting
and receiving antennas are modeled as isotropic point sources/receivers, which is a widely-
used approach for the DOF/EDOF analysis [10,13].

Figure 1. A general model of a MIMO system in an isotropic inhomogeneous environment. Transmit-
ting antennas at the positions rSn(n = 1, . . . , NS) are distributed in the source volume, and receiving
antennas at the positions rRm(m = 1, . . . , NR) are distributed in the receiving volume. The permeabil-
ity of the environment is µ and the permittivity is ε(r) characterizing arbitrary scatterers.
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With source function J(r′), the resulting electric field is

E(r) = −jωµ
∫

Ḡin
(
r, r′
)
J(r′)dr′, (1)

where Ḡin is the inhomogeneous dyadic Green’s function satisfying [33]

∇×∇× Ḡin
(
r, r′
)
−ω2µε(r)Ḡin

(
r, r′
)
= Īδ

(
r− r′

)
, (2)

with Ī the unit tensor. The matrix representation of Ḡin is

Ḡin =

 Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz

, (3)

where each element is a scalar inhomogeneous Green’s function corresponding to one
polarization of field and one polarization of source, denoted by its subscript. Under point
source/receiver approximation, a channel matrix can be built for each scalar Green’s
function. For Gxy, a set of NS point sources at the positions rSn in the source volume are
excited with the complex amplitudes tyn along the y polarization, then the superposed
x-polarized electric field fxm generated at the positions rRm in the receiving volume would
be

fxm =
NS

∑
n=1

Gxy(rRm, rSn)tyn =
NS

∑
n=1

hmntyn, (4)

where hmn = Gxy(rRm, rSn) is the scalar inhomogeneous Green’s function with the pre-
designed source and receiving positions. If tyn and fxm are collected in the two column
vectors ty = [ty1, ty2, . . . , tyNS ]

T and fx = [ fx1, fx2, . . . , fxNR ]
T , we can define the projection

from the point sources to the point receivers as

fx = Hxyty, (5)

with the channel matrix

Hxy =


h11 h12 · · · h1NS
h21 h22 · · · h2NS

...
...

. . .
...

hNR1 hNR2 · · · hNR NS

. (6)

Similarly, for full the polarizations in Equation (4), the complex amplitudes of sources
t = [txtytz]T = [tx1, · · · , txNS , ty1, · · · , tyNS , tz1, · · · , tzNS ]

T is a 3NS × 1 vector, and the com-
plex amplitudes of received signals f = [ fx fy fz]T = [ fx1, · · · , fxNR , fy1, · · · , fyNR fz1, · · · , fzNR ]

T

is a 3NR × 1 vector. The two column vectors are then related by a 3NR × 3NS EM channel
matrix

H =

 Hxx Hxy Hxz
Hyx Hyy Hyz
Hzx Hzy Hzz

, (7)

where the nine NR × NS matrices correspond to the nine scalar inhomogeneous Green’s
functions. The three polarizations of the electric field are orthogonal; hence, we could write
the channel of full polarizations in a matrix form without loss of information. Notice that
the (one-sample) correlation matrixR = HH† or H†H († is the Hermitian operator) sharing
the same eigenvalues is used for estimating the performance of a MIMO system, as the
transmitting (receiving) powers are related by Ḡ†

inḠin (ḠinḠ†
in).

The performance of a MIMO system can be characterized by the communication
capacity, DOF and EDOF. Although capacity is an ultimate demand, we are focusing on the
eigenvalues of the correlation matrix in this work, i.e., the influence of propagating envi-
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ronment, and the signal-to-noise ratio (SNR) can be considered as a constant. EDOF is used
here for convenient calculation and comparison, as observing the significant eigenvalues
for DOF is tedious. For a MIMO system, EDOF represents its equivalent number of SISO
systems and can be calculated by [11]

Ψe(R) =
(

tr(R)
‖R‖F

)2
=

(∑i σi)
2

∑i σ2
i

, (8)

where tr(·) represents the trace operator, the subscript F denotes the Frobenius norm and
σi are the eigenvalues ofR. This equation has been proved to be sufficiently accurate for
estimating the performance of a MIMO system[13]. Generally, the EDOF limit is determined
by both the size of the source/receiving volume and the propagating environment [20–22],
and the latter is of concern here. With sufficient antennas (typically with half-wavelength
spacings), the EDOF limit of a space-constrained MIMO system would be 1 in free space at
the far field (line of sight) and reach the maximum value in the Rayleigh environment (rich
scattering). When some scatterers are placed into the propagating environment to form an
inhomogeneous environment, we will observe an increase in EDOF, which can be used for
characterizing different inhomogeneous environments.

2.2. Numerical Method for Inhomogeneous Green’s Function

Based on Equation (5), when there are sufficient antennas, the performance limit
of a space-constrained MIMO system is completely determined by the inhomogeneous
Green’s function of the propagating environment, which can be investigated with full-wave
numerical methods. As a proof of concept, and for a low computational cost, the 2-D VIE
for the TM wave (only z polarization in Figure 2) is used for getting some fundamental
results and gaining useful physical conclusions. Furthermore, various full-wave methods
can be readily applied to corresponding scenarios following the framework proposed in
Equations (4)–(8). For the TM wave case, the dielectric material is represented by equivalent
polarization current Jz(x, y) in VIE [34].

Jz(x, y) = jωε0[εr(x, y)− 1]Ez(x, y), (9)

where Ez(x, y) is the total electric field, ε0 is the permittivity in free space, and εr is the
relative permittivity. Then, the scattering problem can be modeled by

Einc
z (x, y) =

Jz(x, y)
jωε0(εr(x, y)− 1)

+ jωµ0 Az(x, y), (10)

where
Az(x, y) =

∫∫
Jz
(
x′, y′

) 1
4j

H(2)
0 (k0R)dx′dy′, (11)

and
R =

√
(x− x′)2 + (y− y′)2, (12)

k0 is the free-space wavenumber, and H(2)
0 is the 2-D Green’s function in free space. After

implementing spatial discretization in Figure 2 (N cells), we can use the 2-D pulse basis

pn(x, y) =

{
1 if (x, y) ∈ cell n
0 otherwise

, (13)

the polarization current can be expressed as

Jz(x, y) ∼=
N

∑
n=1

jn pn(x, y). (14)
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Substituting the discrete current into the Equation (10) yields

Einc
z (x, y) ∼=

N

∑
n=1

jn

(
ηp

jk[εr

(
(x, y)

x, y)− 1]
+ jkη

∫∫
cell n

1
4j

H(2)
0 (kR)dx′dy′

)
, (15)

which can be written into a matrix form

Einc
z = Z̄Jz, (16)

with the entries 

Einc
2 (x1, y1)

Einc
2 (x2, y2)
·
·
·

Einc
z (xN , yN)

 =



Z11 Z12 · · · Z1N
Z21 Z22 Z2N
· ·
· ·
· ·

ZN1 ZN2 · · · ZNN





j1
j2
·
·
·

jN

, (17)

where
Zmn =

kη

4

∫∫
celln

H(2)
0 (kRm)dx′dy′ m 6= n, (18)

Zmm =
η

jk(εrm − 1)
+

kη

4

∫∫
cell m

H(2)
0 (kRm)dx′dy′, (19)

Rm =

√
(xm − x′)2 + (ym − y′)2. (20)

The inverse of matrix Z̄ is accelerated by the conjugate-gradient fast-Fourier-transform
(CG-FFT) method [35,36]. By using the VIE, we can quickly calculate the field distribution
excited by a point source at any position in arbitrary environments, thus obtaining the
columns of the channel matrix. In fact, 2-D TM cases would be sufficient for gaining some
fundamental EM insights, as many useful channel models are 2-D models, e.g., Clarke’s
model [19].

For the specific setups, as shown in Figure 2, the distance between the source and
receiving lines is D, the lengths of them are both L, and 2L/λ0 + 1 source/receiving points
are uniformly distributed along the source/receiving lines (slightly smaller than 0.5λ0
spacings), which is sufficient for approaching the EDOF limit of a space-constrained MIMO
system [6]. Arbitrary scatterers can be denoted by εr(x, y), for metallic structures, we use
the complex permittivity of copper at 10 GHz (εr = 1− 1.044× 108j). The above would be
the parameter settings for the following numerical examples.
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Figure 2. A 2-D inhomogeneous environment for the EDOF analyses. The red and blue lines are the
source and receiving lines with the same length L, and 2L/λ0 + 1 point sources/receivers (slightly
smaller than 0.5λ0 spacings, λ0 is the free-space wavelength) are uniformly distributed along the
source/receiving lines for approaching the EDOF limit, and D is the distance between the source and
receiving lines. The blue grid represents the discretized grids, and εr(x, y) characterizes arbitrary
isotropic scatterers.

3. Numerical Examples
3.1. Key-Hole Scenario

The key-hole scenario is a special and well-known MIMO system, where the rank of the
correlation matrix is very low due to the particular propagating environment. Some approx-
imate methods and experiments have been conducted for investigating this scenario [37,38].
Here, we present some results with the proposed model. The key-hole scenario discussed is
shown in Figure 3a. A large metallic sheet with an aperture is set in the middle between the
source and receiving lines, which becomes a key-hole scenario when the size of aperture
(S) is very small. The lengths of the source and receiving lines are set relatively long
(L = D = 5λ0) so that there will still be EDOF gain when the sheet is removed. The relation
between S and EDOF is depicted in Figure 3b. It can be observed that the EDOF will be
gradually reduced to 1, i.e., become equivalent to that of a SISO system, when the size
of the hole keeps decreasing. Moreover, the electric fields |Ez| excited by a point source
at position (−2.5, 0) with different S are demonstrated in Figure 4. When S = 0.5λ0, less
power could pass through the hole, and the field at the receiving line is rather uniform,
which is not good for MIMO communication. More signals can be received and the field is
more focused at the receiving line when S = 2λ0.

Figure 3. EDOF limit in key-hole scenario: (a) Diagram of the key-hole scenario. L = 5λ0 is the
length of the source/receiving line, and D = 5λ0 is the distance between the source and receiving
lines. A metallic sheet, with a Sλ0 hole in the center, is placed in the middle between the source and
receiving lines; (b) EDOF limit versus S.
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Figure 4. Electric field |Ez| excited by a point source at position (−2.5, 0): (a) S = 0.5λ0; (b) S = 2λ0.

3.2. Cylindrical Scatterers

The EDOF limit in inhomogeneous environments constructed by 2-D cylindrical
scatterers is also investigated. Here, we demonstrate a typical case after testing several kinds
of combinations, including single, double, and uniform or random arrays of cylindrical
scatterers. It has been found that the two-scatterer case depicted in Figure 5a can achieve
relatively higher EDOF, where the two dielectric cylinders, with the same radius R and
relative permittivity εr, are placed in the left and right quadrisection points between the
source and receiving lines. The lengths of the source and receiving lines are L = 2λ0 and
the distance between them is D = 10λ0, which fulfills the far-field condition (EDOF = 1
without the scatterers).

The EDOF versus R and εr is shown in Figure 5b, from which we can observe that
larger R can significantly improve EDOF, while the influence of εr is not distinct. At the
maximum value of EDOF (EDOF = 4.3), the cylindrical scatterers provide fairly good
MIMO performance even close to that in a canonical Rayleigh channel (EDOF = 4.5). The
normalized electric fields |Ez| excited by point sources at positions (−5, 0) and (−5, 0.5)
in the best case (R = 2.4λ0, εr = 3) are depicted in Figure 6a, and that in the worse case
(R = 2λ0, εr = 6) are depicted in Figure 6b. Apparently, the fields in the former case are
more focused, leading to a lower field correlation (inner product between the received
electric fields excited by the two point sources at two different positions), thus a higher
EDOF.

Figure 5. EDOF limit in an inhomogeneous environment with double cylindrical scatterers: (a)
Diagram of the double-scatterer environment. The lengths of the source and receiving lines are both
L = 2λ0, and the distance between them is D = 10λ0. Two identical dielectric cylinders, with the
radius R and relative permittivity εr, are placed in the left and right quadrisection points between the
source and receiving lines; (b) EDOF limit versus R and εr.



Electronics 2022, 11, 3232 8 of 12

Figure 6. Normalized |Ez| at the receiving line (at x = 5) excited by the two point sources at the
positions (−5, 0) and (−5, 0.5): (a) εr = 3, R = 2.4λ0; (b) εr = 6, R = 2λ0.

3.3. Cavity Structure

As depicted in Figure 7a, in a metallic cavity, a metallic square obstacle with a side
length Sc is placed in the middle between the source and receiving lines to enhance the
multi-path effect [39]. The lengths of the source and receiving lines are L = 2λ0 and the
distance between them is D = 10λ0 (the same as the parameters in the cylindrical case). The
EDOF versus Sc is shown in Figure 7b, it can be observed that a relatively larger obstacle
can enhance the multi-path effect, while the EDOF will approach 1 if the propagating
path is largely blocked by an oversized obstacle, just similar to the key-hole case. The
decrease at Sc = 5λ0 is on account of the oscillation of spatial correlation, e.g., Clarke’s
model. The normalized electric fields |Ez| excited by the two point sources at the positions
(−5, 0) and (−5, 0.5) in the best case (Sc = 7λ0) are depicted in Figure 8a, and that in the
worst case (Sc = 5λ0) are depicted in Figure 8b. The field correlations in the two cases
are 12 and 32, respectively. Different from the cylindrical case, the correlations are hard
to be directly compared to the figures, which means that the MIMO performance in a
complicated environment still needs to be estimated with a strict model rather than an
intuitive method.

Figure 7. EDOF limit in a metallic cavity structure: (a) Diagram of the cavity. The lengths of the
source and receiving lines are both L = 2λ0, and the distance between them is D = 10λ0, and the
side length of the cavity is slightly larger than D. A metallic square obstacle, with the side length Sc,
is placed in the center between the source and receiving lines; (b) EDOF limit versus Sc.
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Figure 8. Normalized |Ez| at the receiving line (at x = 5) excited by the two point sources at the
positions (−5, 0) and (−5, 0.5): (a) Sc = 7λ0; (b) Sc = 5λ0.

4. Relation between MIMO Performance and Scattering Characteristics

The MIMO performance is determined by its correlation matrixR, where each entry
Rmn is the inner product between the received fields generated by the mth source and the
nth source. A good MIMO performance requires thatRmn is kept as small as possible when
m 6= n. This requirement indicates that two types of fields could produce ideal MIMO
performances: the Dirac-function type of field and the Gaussian-white-noise type of field,
as Rmn is 0 when m 6= n in the two situations. In the following, we are going to discuss
what kinds of inhomogeneous environments could produce fields close to the two ideal
situations.

For the Dirac-function type of field, using a 2-D cylindrical scatterer is naturally a
good route, as shown in Figure 9. A large cylinder has the scattering characteristic of
strong forward scattering, thus producing a focusing field. Moreover, because of its angular
symmetry, the fields excited by the mth source and the nth source have almost the same
patterns but a spatial translation, as illustrated in the right part of Figure 9. Therefore, the
inner product between the fields (Rmn) will be smaller if the fields are more focused, as is
the case in Figure 6. In fact, this scenario is quite similar to Clarke’s model for the Rayleigh
channel. The Rayleigh channel can be simulated by the superposition of uniformly-arrived
plane waves [19], and its electric field distribution in Cartesian coordinate is

Ez(x, y) =
1√
N

N

∑
n=1

exp{−jϕn}, (21)

where N is the number of plane waves, ϕn = k0 cos αnx + k0 sin αny, αn=πn/N denote the
directions of plane waves, and 1/

√
N is the average of power. When N waves arrive from

any direction with equal probability, the autocorrelation function of the electric field is

REz(ξ) = 〈Ez(x, y)E∗z (x + ξ, y)〉av

=
1
N

N

∑
n=1
〈exp{jk0 cos αnξ}〉av

= J0(k0ξ),

(22)

where ∗ denotes the conjugate, 〈·〉av represents the average, ξ is the distance between the
two receivers and J0 is the zero-order Bessel function. Obviously, the correlation in the
Rayleigh channel is just the average of phase delays between the two receivers, where the
incident plane waves arrive from αn with the same probability. The deterministic fields
n and m in Figure 9 can be regarded as the effective samples (realizations) for random
Ez(x, y) and Ez(x+ ξ, y) in Equation (16), respectively, indicating that a large 2-D cylindrical
scatterer in the TM case could be a physical analogy of the Rayleigh channel.
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Figure 9. Diagram of the electric fields excited by two point sources at different positions, with a 2-D
cylindrical scatterer in the center.

Hence, for a deterministic propagating environment, large and angular-symmetric scat-
terers will produce good MIMO performances when the receivers are properly positioned,
which is also tenable for the three-dimensional full-polarization cases. For highly-irregular
scatterers, the influences of phases and polarizations are complex, and thus it is hard to
draw some general conclusions. Rigorous numerical methods are needed for modeling and
understanding these complicated environments, and the challenge of computational cost
can be eased by making some reasonable approximations, such as parabolic equations for
tunnels and ray-tracing methods for stations [26]. Moreover, for Equation (3), we also tried
Born series [40] for getting some insights into multiple-scattering effects. However, the
Born series is not suitable for communication problems because the series is not convergent
for large-scale high-contrast problems.

For the Gaussian-white-noise type of field, the correlations need to be considered from
the perspective of statistical properties. For example, in a reverberant chamber for creating
various stochastic environments, the received fields would appear noise-like properties
due to the stirring and time average [41,42]. Large amounts of scatterers in the propagating
environment always produce this kind of field. However, these are stochastic channels and
are out of our main concerns in this work.

5. Conclusion

In this work, VIE is combined with an EM MIMO model for estimating the EDOF
limit in 2-D inhomogeneous environments. Three representative numerical examples are
presented, which provide insights for exploring the EDOF limit of deterministic MIMO sys-
tems. The theoretical framework could readily be implemented in various communication
scenarios with corresponding numerical algorithms incorporating full polarizations. The
proposed results are useful for understanding the EM information theory and the designs
of the MIMO antenna array.
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