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Abstract— A hybrid higher order discontinuous Galerkin time-
domain (DGTD) method and finite-element time-domain (FETD)
method with parallel technique is proposed for electromag-
netic (EM)–circuital–thermal co-simulation in this article. For
electromagnetic simulation, DGTD method with higher order
hierarchical vector basis functions is used to solve Maxwell
equation. Circuit simulation is carried out by modified nodal
analysis method. For thermal simulation, FETD method with
higher order interpolation scalar basis functions is adopted to
solve heat conduction equation. To implement electromagnetic–
circuital–thermal co-simulation, the electromagnetic and circuital
equations are strongly coupled through voltages, currents, and
electric fields at the lumped ports first. Then the electromagnetic
and thermal equations are weakly coupled with electromagnetic
loss and temperature-dependent medium parameters. Finally,
large-scale parallel technique is used to accelerate the process of
multiphysics simulation. Numerical results are given to validate
the correctness and capability of the proposed electromagnetic–
circuital–thermal co-simulation method.

Index Terms— Discontinuous Galerkin time-domain (DGTD)
method, electromagnetic (EM)–circuital–thermal co-simulation,
finite-element time-domain (FETD) method, higher order basis
functions, parallel technique.

I. INTRODUCTION

THE electromagnetic (EM) field–circuit coupling and
thermal management problems are more and more seri-
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ous with the increase in working frequency and power in
microwave circuits. The accuracy of traditional pure circuit
simulation cannot meet the engineering requirements with
the increase in frequency. Numerical simulation method of
electromagnetic field and traditional circuit theory must coop-
erate to implement electromagnetic–circuital co-simulation.
Moreover, the large heat flux induced by high power can result
in high temperature and nonuniform stress in microwave cir-
cuits. Thus, circuit malfunction will naturally happen over the
long term. Therefore, electromagnetic–thermal co-simulation
is significant in the initial design stage of microwave cir-
cuits. If we consider the influences of both high working
frequency and high power, the electromagnetic field, lumped
circuit, and thermal field will couple together and interact with
each other. Electromagnetic–circuital–thermal co-simulation is
indispensable under such circumstances.

Many scholars have focused on the electromagnetic–
circuital co-simulation method and electromagnetic–
thermal co-simulation method. Electromagnetic–circuital
co-simulation method consists of electromagnetic simulation
method and circuit simulation method, which are linked
together by voltages, currents, and electromagnetic fields
at the lumped ports. The studies in this area are mainly
related to different electromagnetic and circuital simulation
methods. For instance, the finite-difference time-domain
(FDTD) method [1]–[3], finite-element time-domain (FETD)
method [4]–[6], time-domain integral equation (TDIE)
method [7], [8], and the discontinuous Galerkin time
domain (DGTD) method [9], [10] are used for electromagnetic
simulation. Modified nodal analysis method [2], [4], [7], [9],
scattering matrices method [6], and behavioral macromodel
method [3], [8], [10] are applied for circuit simulation.
The electromagnetic–thermal co-simulation method is
composed of electromagnetic simulation method and thermal
simulation method, which are mutually coupled through
electromagnetic loss and constitutive parameter. The studies
on electromagnetic–thermal co-simulation method are
relatively less compared with the electromagnetic–circuital
co-simulation method. Much emphasis is put on numerical
methods for solution of differential equations including
Maxwell equation and heat conduction equation. The FDTD
method [12], [13], FEM [13], [14], DGTD method [15],
and spectral-element time-domain (SETD) method [16] are
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adopted for electromagnetic–thermal co-simulation. It is worth
mentioning that the electromagnetic simulation is carried out
in the frequency domain in [13] and [14] with the hypothesis
that time-harmonic excitation sources are imposed. Obviously,
it is not applicable when a transient excitation source like a
pulse is applied when two-way coupling of EM and thermal is
considered. Another issue of concern is that the simultaneous
simulation of electromagnetic, circuit, and thermal, has not
been found yet in the existing literatures [16]. However,
electromagnetic–circuital–thermal coupling is a very common
phenomenon in microwave circuits [18]–[21]. For instance,
the operating frequency and integration density are increased
rapidly in present high-speed integrated circuits (ICs). The
electromagnetic field effects such as crosstalk, radiation of
the interconnects, and its coupling with the package become
more and more noticeable. So classical circuit simulation
must be replaced by electromagnetic–circuital co-simulation
with the consideration of simulation accuracy. Meanwhile,
the performance of IC is sensitive to temperature variations,
which has influences on the material properties of ICs. So the
electromagnetic–thermal interactions must also be taken into
account simultaneously.

In this work, we propose a hybrid higher order DGTD
and FETD method with parallel technique for transient
electromagnetic–circuital–thermal co-simulation. The DGTD
method with higher order hierarchical vector basis func-
tions is used for electromagnetic simulation. The modified
nodal analysis method is adopted for circuit simulation. The
FETD method with higher order interpolation scalar basis
functions is used for thermal simulation. Then the elec-
tromagnetic, circuit, and thermal simulations are coupled
together by a well-designed coupling mechanism. Finally,
large-scale parallel technique is applied to accelerate the
process of multiphysics simulation. The contribution of this
work includes: 1) simultaneous simulation of electromagnetic,
circuit, and thermal is implemented; 2) higher order basis
function technique is applied for multiphysics simulation
to improve the simulation accuracy and efficiency; and 3)
large-scale parallel technique is adopted to accelerate the
multiphysics simulation process. In summary, a systematic
solution for accurate and efficient electromagnetic–circuital–
thermal co-simulation of microwave circuits is provided in this
article.

This article is organized as follows. In Section II, the theo-
ries and formulations of the proposed method are introduced.
In Section III, numerical examples are provided to present the
accuracy, efficiency, and capability of the proposed method.
Ultimately, conclusions are drawn in Section IV.

II. THEORIES AND FORMULATIONS

Fig. 1 shows the flowchart of electromagnetic-
circuital–thermal co-simulation. At the i th time step,
the electromagnetic–circuital co-simulation is carried out
first since the rate of change in voltages, currents, and
electromagnetic fields is at the same level. After that, the
power loss of the material can be calculated according
to the electromagnetic field inside the material, which

Fig. 1. Flowchart of electromagnetic–circuital–thermal co-simulation.

serves as the heat sources of thermal simulation. After
thermal simulation at the i th time step, the computation
process will terminate if i equals to the predetermined total
number of time steps Nt . Otherwise, temperature-dependent
constitutive parameters such as permittivities, permeabilities,
and conductivities of materials are updated. It is worth
mentioning that only temperature-dependent conductivities
of materials are considered while the permittivities and
permeabilities are assumed to be constant for the sake of
simplicity. But the proposed method is also applicable to
materials with temperature-dependent permittivities and
permeabilities. The electromagnetic–circuital co-simulation at
next time step continues. In the following, we will present
the technical details of the simulation process.

A. Electromagnetic–Circuital Co-Simulation With Higher
Order DGTD Method

The EM simulation starts from the Maxwell curl equations

ε
∂E
∂ t

= ∇ × H − σE (1)

μ
∂H
∂ t

= −∇ × E (2)

with permittivity ε, permeability μ and conductivity σ .
Let V be the computational domain where the DGTD

method is applied for EM simulation. The domain V is
subdivided into N tetrahedron elements V1, V2, . . . , VN . The
boundary of Vi is ∂Vi . The second-order hierarchical vector
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basis function defined in Vi is Nk [22], [23]

Nk = Lk1∇Lk2 − Lk2∇Lk1 (k = 1, 2, . . . , 6) (3)

Nk = Lk1∇Lk2 + Lk2∇Lk1 (k = 7, 8, . . . , 12) (4)

Nk = Lk3(Lk1∇Lk2 − Lk2∇Lk1) (k = 13, 14, . . . , 16) (5)

Nk = Lk1(Lk3∇Lk2 − Lk2∇Lk3) (k = 17, 18, . . . , 20) (6)

where Nk(k = 1, 2, . . . , 6) are the first-order basis functions.
k1, k2, k3 denote the three nodes of the tetrahedral surface,
and L refers to the volume coordinate.

Using the Galerkin testing method to (1) and (2), we can
obtain

∫
Vi

εNk · ∂E
∂ t

dV +
∫

Vi

Nk · σEdV =
∫

Vi

∇ × Nk · HdV

+
∫

∂Vi

Nk · n̂ × Hd S (7)∫
Vi

μNk · ∂H
∂ t

dV = −
∫

Vi

∇ × Nk · EdV

−
∫

∂Vi

Nk · n̂ × Ed S. (8)

By adopting upwind numerical flux to (7) and (8), the
tangential fields on ∂Vi depend on the linear combination
of the tangential fields on both sides of ∂Vi in two adjacent
elements

n̂ × H = n̂ × Hi + Z j

Z i + Z j
n̂ × (

H j − Hi
)

+ 1

Z i + Z j
n̂ × (

n̂ × (
Ei − E j

)) − Z j JCKT

Z i + Z j
(9)

n̂ × E = n̂ × Ei + Y j

Y i + Y j
n̂ × (

E j − Ei
)

+ 1

Y i +Y j
n̂ × (

n̂×(
H j − Hi

)) − n̂ × JCKT

Y i +Y j
. (10)

The superscript i or j represents the quantity corresponding
to the i th element or adjacent j th element. Z i = 1/Y i =
(μi/εi )1/2, Z j = 1/Y j = (μ j/ε j)1/2. JCKT equal to zero at
the surfaces without lumped ports.

Substitute (9) and (10) into (7) and (8), and expand the
electromagnetic fields with the second-order hierarchical vec-
tor basis functions, we can obtain the semi-discrete DG matrix
equations

εMi ∂ei

∂ t
= Si hi + Fii

eeei − Fi j
eee j − Fii

ehhi

+ Fi j
ehh j − Ci ei − Ji

e (11)

μMi ∂hi

∂ t
= −Si ei + Fii

hhhi − Fi j
hhh j

+ Fii
heei − Fi j

hee j + Ji
h . (12)

The detailed expressions of all the matrix elements in (11)
and (12) are summarized in the Appendix.

The leapfrog temporal integration scheme is used to gener-
ate the fully discrete DG matrix equations

εMi ei
n+1 + �t

2
Ci ei

n+1 + �t

2
Ji

e,n+1

= εMi ei
n +�t

[
Si hi

n+1/2 − Ji
e,n

2
+ Fii

eeei
n − Fi j

eee j
n

− Fii
ehhi

n+1/2+Fi j
ehh j

n+1/2 − 1

2
Ci ei

n

]

(13)

μMi hi
n+3/2 = μMi hi

n+1/2 + �t
[
−Si ei

n+1 + Ji
h,n+1

+ Fii
hhhi

n+1/2−Fi j
hhh j

n+1/2

+ Fii
heei

n+1−Fi j
hee j

n+1

]
. (14)

The modified nodal analysis method is adopted to obtain the
matrix equations for the lumped circuits [24]. The resultant
circuit equations can be expressed as a functional relationship
between the port currents In and port voltages Vn

In = f (Vn). (15)

The coupling relationship between the electromagnetic
equation and circuit equation is constructed using the port
voltage, port current, and the electric field of the port element

Vn = −
∫

Ei · L̂d L = −
Ne∑

k=1

ei
k,n

∫
Ni

k · L̂d L (16)

JCKT = In/W (17)

where L̂ represents the unit vector from the ground to the
potential point at the lumped port. W refers to the width of
the lumped port.

The electromagnetic equations in (13) and (14) and the
circuit equation in (15) can be combined into a whole synchro-
nously solved marching-on-in-time system equation through
(16) and (17). After solving this equation, we can obtain the
port currents, the port voltages at the lumped ports, and the
electromagnetic fields in the computational domain V .

B. Thermal Simulation

The thermal simulation is based on the transient heat
conduction equation

ρCρ
∂T

∂ t
= ∇ · (κ∇T ) + Q (18)

where T refers to the transient temperature distribution
of the object, which is the unknown of this equation. ρ
denotes the mass density. Cρ is the specific heat capacity.
κ represents the thermal conductivity. Q is the heat source,
which means the thermal energy generated per unit time and
unit volume.

Consider the commonly used convection boundary condi-
tion which describes the thermal transfer between the object
surface and its surrounding environment

−n̂ · κ∇T = h(T − Tsur) (19)
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where Tsur represents the surrounding temperature. h refers to
the convective heat transfer coefficient.

A standard process of the FETD method is used to solve
the heat conduction equation. The tetrahedral mesh used for
EM simulation is also adopted for thermal simulation. The
unknown T in (18) is expanded by the second-order scalar
interpolation basis functions [25]

Nk = (
2Lk − 1

)
Lk (k = 1, 2, 3, 4) (20)

Nk = 4Lk1 Lk2 (k = 5, 6, . . . , 10) (21)

where Lk is the volume coordinate related to node k of a
tetrahedral element. Lk1 and Lk2 denote the volume coordinate
related to the two nodes of one of the six edges, respectively.

Using the Galerkin testing method and Crank–Nicolson
(CN) scheme for temporal discretization [31], we can obtain
the final matrix equation for thermal simulation(

[C] + [K]
�t

2

){
τi

} =
(

[C] − [K]
�t

2

)
{τi−1} + {f}�t (22)

where

[C]kl = ρCρ

∫
V

Nk Nl dV (23)

[K]kl = κ

∫
V

∇Nk · ∇Nl dV + h
∫

S
Nk Nl d S (24)

{f}k =
∫

V
Nk QdV + h

∫
S

Nk Tsurd S. (25)

After solving (22), we can obtain the transient temperature
distribution of the object.

C. Electromagnetic-Circuital-Thermal Coupling Mechanism

After electromagnetic–circuital co-simulation at each time
step, we can obtain the corresponding electric field distribution
E. Then we can calculate the dissipated power at that time step

P = σ |E|2. (26)

This dissipated power serves as the heat source Q in ther-
mal simulation. According to the thermal simulation result
at each time step, we can check if the temperature dis-
tribution changes. The changed temperature may influence
temperature-dependent medium parameters such as permittiv-
ity, permeability, and conductivity. Thus, it will influence the
electromagnetic–circuital co-simulation in the next time step.
This process iterates until the current time step equals to the
predetermined total number of time steps Nt .

In this article, we only consider the influence of temperature
on conductivity. Their relationships are supposed to be

σ = σ0

1 + α(T − Ti)
(27)

where σ0 is the conductivity at initial temperature Ti . α is the
temperature coefficient of the material.

The strategy of temporal discretization for electromagnetic-
circuital–thermal co-simulation also needs to be well-designed.
In our work, the CN scheme is adopted for temporal dis-
cretization of thermal simulation, which is unconditionally
stable. Leapfrog scheme is used for temporal discretization
of electromagnetic–circuital co-simulation, which is explicit

Fig. 2. Schematic of dividing the original meshes into different groups.

and conditionally stable. So Courant limit needs to be taken
into account for electromagnetic–circuital co-simulation. The
time step size of the i th element of the DGTD method �ti
should satisfy [26]–[28]

ci�ti

[
4
√

5

3
+ 8

3
max

(√
μi

μ j
,

√
εi

ε j

)]
<

4Vi

Pi
(28)

where ci = 1/(εiμi )
1/2 is the speed of light. Vi refers to

the volume of the i th element. Pi is the total area of four
facets of the i th element. The subscript j represents one of
the neighboring elements of the i th element. The time step
size of all the elements is the same in this article, which is
�t = min{�ti , i = 1, 2, . . . , N }.

Since the temperature changes much slower than the
electromagnetic fields, we can also adopt larger time step
size for thermal simulation than for electromagnetic–circuital
co-simulation to implement asynchronous electromagnetic–
circuital–thermal co-simulation to accelerate the simulation
process. The time step size of thermal simulation is chosen
to be kT −EM times of the time step size of EM simulation

�tth = kT −EM�tEM (29)

where kT −EM is recommended to be smaller than 2000 to
guarantee accuracy according to the numerical experiments
in Section III. In the asynchronous electromagnetic-circuital–
thermal co-simulation, the dissipated powers obtained by
electromagnetic–circuital co-simulation of every kT −EM time
steps are averaged as the heat source of thermal simulation.

D. Parallel Strategies

Since the electromagnetic–circuital co-simulation and
thermal simulation are weakly coupled, they are separately
parallelized using message passing interface (MPI) tech-
nique to accelerate the electromagnetic-circuital–thermal co-
simulation. There are mainly three stages for parallelization of
both the electromagnetic–circuital co-simulation and thermal
simulation, namely, mesh grouping, matrix filling and equation
solving.

In the stage of mesh grouping, the original meshes are
divided into different groups as shown in Fig. 2. Thus, each
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process can handle one group of meshes. There are two impor-
tant rules for good grouping: 1) the number of meshes for each
group should be almost the same to guarantee load balance
and 2) the interfaces between the meshes of different groups
should be minimum to reduce inter-process communication.
Thanks to the METIS software [29], we can easily group the
original meshes satisfying the above two rules.

For electromagnetic–circuital co-simulation, each process
computes the element matrices related to its own group of
meshes during matrix filling stage. What calls for special
attention is that the information of adjacent elements is needed
when computing Fi j

ee, Fi j
eh , Fi j

he, and Fi j
hh because inter-process

communication is needed for the elements at the interfaces
belonging to two adjacent groups. All the other matrices
can be calculated directly by each process without inter-
process communication. Similarly, in the stage of solving
matrix equation, each process will solve many small element
matrix equations related to its own meshes. However, inter-
process communication is required when computing the matrix
vector multiplication Fi j

eee j , Fi j
ehh j , Fi j

hee j , and Fi j
hhh j in (13)

and (14) for the elements at the interfaces belonging to two
adjacent groups. Since the elements at the interfaces account
for a very small percentage of all the elements, the amount
of inter-process communication of the DGTD method is quite
small, resulting in a rather high parallel efficiency.

For thermal simulation, after the element matrices with
their expressions in (23), (24), and (25) are computed in
each process, the large global sparse matrix at the left-hand
side of (22) need to be assembled using all the element
matrices. The right-hand side of (22) can be calculated by each
process in parallel. Finally, the final large matrix equation is
solved using a parallel sparse direct solver named multifrontal
massively parallel sparse direct solver (MUMPS) at each time
step [30]. Since the FETD method needs to solve global sparse
matrix equations, the parallel efficiency is relatively lower than
the DGTD method due to the great amount of inter-process
communication.

The standard definition of parallel efficiency is

η = Ts

NTN
(30)

where Ts is the total CPU time when a problem is solved by
a single process, while TN is the total CPU time when the
same problem is solved by N processes. In practice, if the
problem to be solved cannot fit into a single process, we take
the time for the smallest number of processes as the reference.
The parallel efficiency is re-defined as

η = TNr Nr

TN N
(31)

where TNr is the total CPU time taken by Nr processes, and
TN is the total CPU time taken by N processes. In this case,
the smallest number of processes is Nr .

III. NUMERICAL RESULTS

In this section, four numerical examples are given to validate
the electromagnetic–circuital co-simulation method, thermal
simulation method, and the electromagnetic–circuital-thermal

Fig. 3. Model of a microstrip line structure.

Fig. 4. Voltage waveforms at port a and port b.

co-simulation method. The computational platform adopted for
the testing of parallel efficiency is a High Performance Cluster
of Beijing Super Cloud Computing Center (BSCC). There are
100 compute nodes in the cluster. Each node is equipped with
AMD EPYC 7452 CPU with 32 cores and 256-GB RAM.
Each core supports two processes. Other numerical results are
obtained on a workstation with Intel Xeon E5-1660 CPU with
eight cores and 128-GB RAM.

A. Validation of Electromagnetic–Circuital Co-Simulation
Method by a Microstrip Line Structure

As shown in Fig. 3, a microstrip line resides 0.5 mm above
the ground plane. The length and the width of microstrip line
are 15 and 1.6 mm, respectively. The length and width of the
ground plane are 30 and 20 mm, respectively. The relative
dielectric constant of the substrate is 2.0. Two lumped ports
are defined at port a and port b, respectively. Port a is driven
by a Gaussian pulse source in series with a 50-� resistor. Port
b is connected with a 50-� resistor.

First, the model is discretized into 3523 tetrahedron ele-
ments. The total simulation time is set to be 0.8 ns. The
total number of time steps is 30 000. Second-order hierarchical
vector basis function is adopted. The voltages at port a
and port b are obtained by the DGTD method as shown in
Fig. 4. Besides, the transient electric field components at two
randomly chosen sampling points P1 (−6.5, 0, 0.25 mm) and
P2 (2.5, 0, 0.25 mm) are calculated as shown in Fig. 5. The
transient electric field distribution on the plane of z = 0.25 mm
at 0.25 ns is given in Fig. 6. All the results obtained by our
proposed method agree well with those of COMSOL software.
Besides, the CPU times and the memory requirements of the
proposed method and the COMSOL software are compared in
Table I for all the numerical examples in this section. Both
the proposed method and the COMSOL software use parallel
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Fig. 5. Transient electric field components at two randomly chosen sampling
points P1 and P2.

Fig. 6. The transient electric field distribution on the plane of z = 0.25 mm
at 0.25 ns obtained by (a) COMSOL software and (b) proposed method.

computing with eight cores. Obviously, the CPU time and
memory consumption of the proposed method are less than
the COMSOL software.

Second, both the first-order vector basis functions and
second-order vector basis functions are used, respectively,
to compare their performance. The voltage value at port a is
recorded. The average relative error is calculated using (32).
As shown in Table II, when the accuracy of two kinds of
basis functions is similar, the number of elements, memory
requirement, and CPU time needed when using second-order
basis functions are much less than those when using first-order
basis functions

Error = 1

Nt

Nt∑
n=1

∣∣Vn
DGTD − Vn

COMSOL

∣∣∣∣Vn
COMSOL

∣∣ (32)

where Nt is the total number of time steps, and Vn
DGTD and

Vn
COMSOL are the voltage values at time step n calculated by

the DGTD method and COMSOL software, respectively.

TABLE I

CPU TIME AND THE MEMORY REQUIREMENT OF THE PROPOSED
METHOD AND THE COMSOL SOFTWARE FOR

THE FOUR NUMERICAL EXAMPLES

TABLE II

PERFORMANCE OF DIFFERENT ORDER BASIS FUNCTIONS

TABLE III

CPU TIME AND PARALLEL EFFICIENCY OF THE DGTD METHOD

Third, the parallel performance of the proposed method
is assessed. The model is discretized into 158 380 elements.
Second-order hierarchical vector basis function is adopted.
The CPU time corresponding to 64, 128, 192, 256, and
512 processes is recorded. Then the parallel efficiency of the
proposed method is computed as given in Table III. It can
be observed that the DGTD method has a quite good parallel
performance.

B. Validation of Thermal Simulation Method by
Dual-Polarized Dipole Antenna Structure

The thermal simulation of a 3 × 3 base station antenna
array is carried out as the second example. As shown in
Fig. 7, the structure consists of nine dual-polarized dipole
antennas, a ground plane, and six heat source blocks. The sizes
of the antenna element and the ground plane are 33.125 ×
33.125 × 25 mm3 and 214 × 185 × 1.875 mm3, respectively.
The detailed dimensions of the geometry are summarized in
Table IV. The material of the whole structure is aluminum.
The total power of the six heat source blocks is 19.2 W,
which is used to imitate the heating of RF circuits. All
boundary surfaces of the structure are supposed to be the
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Fig. 7. Base station antenna array. (a) 3-D view. (b) Antenna element. (c) Top
view.

TABLE IV

DETAILED DIMENSIONS OF THE GEOMETRY (UNIT: mm)

Fig. 8. Temperatures at two randomly chosen sampling points P1 and P2.

convective boundary conditions with heat transfer coefficient
h = 5 W/(m2 · K). The ambient temperature and initial
temperature of the structure are 293.15 K. The structure is dis-
cretized into 49 396 tetrahedron elements. The total simulation
time is 3000 s. The total number of time steps is 3000. Second-
order scalar basis function is adopted. The temperatures at
two randomly chosen sampling points P1 (92, 100, 0 mm)
and P2 (31, 88, −26 mm) are calculated as shown in Fig. 8.
In addition, the 3-D temperature distributions of the structure
obtained by the proposed method and COMSOL software at
190 s are also demonstrated in Fig. 9. Good agreement can
be observed. The CPU times and memory requirements of
the proposed method and the COMSOL software are given in
Table I.

Both the first-order scalar basis functions and second-order
scalar basis functions are adopted, respectively, to compare

Fig. 9. 3-D temperature distributions of the structure at 190 s obtained by
(a) COMSOL software and (b) proposed method.

TABLE V

PERFORMANCE OF DIFFERENT ORDER BASIS FUNCTIONS

TABLE VI

CPU TIME AND PARALLEL EFFICIENCY OF THE FETD METHOD

their performance. The temperatures of six randomly chosen
observation points are recorded. The average relative error is
calculated by (33). As shown in Table V, when the accuracy
of two kinds of basis functions is the same, the number of
elements, memory requirement, and CPU time needed when
using second-order basis functions are less than those when
using first-order basis functions

Error = 1

M

M∑
p=1

(
1

Nt

Nt∑
n=1

∣∣Tn,p
FETD − Tn,p

COMSOL

∣∣∣∣Tn,p
COMSOL

∣∣
)

(33)

where Nt is the total number of time steps, M is the total
number of observation points, and Tn,p

FETD and Tn,p
COMSOL are

the temperatures of the pth observation point at time step n
calculated using the FETD method and COMSOL software,
respectively.

Finally, the parallel performance of the proposed method is
assessed. The model is discretized into 333 087 elements. The
CPU time corresponding to 8, 16, 32, 56, and 64 processes is
recorded. Then the parallel efficiency of the proposed method
is computed given in Table VI. The parallel efficiency of
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Fig. 10. (a) Circuit at port b. (b) Equivalent circuit model.

Fig. 11. Voltage waveforms at port b.

the FETD method decreases faster compared with the DGTD
method.

C. Electromagnetic–Circuital–Thermal Co-Simulation of a
Microstrip Line Loaded With a Diode

The dimension of the microstrip line structure is the same
as the one in Fig. 3. Port a is driven by a sinusoidal voltage
source in series with a 50-� resistor. Port b is connected with
a diode in parallel with a 50-� resistor, the equivalent circuit
model of which is shown in Fig. 10. The electromagnetic
parameters of the substrate are εr = 2.0, σ0 = 0.1. The thermal
parameters are ρ = 2330 kg/m3, Cρ = 704 J/(kg · K), α =
0.01 1/K, and κ = 30 W/(m · K). In the thermal simulation,
convective boundary condition is applied on all boundary
surfaces with the heat transfer coefficient h = 15 W/(m2 · K).
In addition, the ambient and initial temperatures are 293.15 K.
The structure is discretized into 3523 tetrahedral elements. The
total simulation time is set to be 10 ns. The total number of
time steps is 250 000. The second-order vector basis function
is used for electromagnetic simulation, while the first-order
scalar basis function is adopted for thermal simulation.

First, the time step sizes for both electromagnetic–circuital
and thermal simulations are chosen to be the same. The voltage
at port b is shown in Fig. 11. Besides, the transient electric
field component at a randomly chosen sampling point P (2.5, 0,
0.25 mm) is calculated as shown in Fig. 12. The temperature
distribution on the plane of z = 0.25 mm at 0.5 ns is shown
in Fig. 13. All the results obtained by our proposed method
agree well with those of COMSOL software.

Second, asynchronous electromagnetic-circuital–thermal
co-simulation is tested. The temperature curves at a ran-
domly chosen sampling point P (−6.5 mm, 0 mm, 0.25 mm)

Fig. 12. Transient electric field component at a randomly chosen sampling
point P (2.5, 0, 0.25 mm).

TABLE VII

CPU TIMES CORRESPONDING TO DIFFERENT THERMAL TIME STEP SIZES

TABLE VIII

CPU TIMES CORRESPONDING TO DIFFERENT THERMAL TIME STEP SIZES

is computed using different thermal time steps kT −EM =
1, 1000, 2000, 5000, 8000 as shown in Fig. 14. The transient
electric field distributions on the plane of z = 0.25 mm at
4 ns with kT −EM = 1, 2000, 8000 are displayed in Fig. 15.
The results corresponding to kT −EM = 2000 show small
differences with the cases of kT −EM = 1. So we recommend
kT −EM = 2000 to guarantee accuracy. Besides, the CPU
time of kT −EM = 1 and 2000 is given in Table VII. It can
be observed that the CPU time of thermal simulation with
kT −EM = 2000 is reduced by over 43% compared with
kT −EM = 1.

D. Electromagnetic–Circuital–Thermal Co-Simulation of a
MESFET Microwave Power Amplifier

A MESFET microwave power amplifier is analyzed as the
last example. The microstrip matching network is shown in
Fig. 16(a). The input port a and the output port b are driven by
dc sources with amplitudes VGG = −0.81 and VDD = 18.96.
An extra sinusoidal voltage source operating at 6 GHz is
applied at port a. A MESFET is connected with ports G
and D. The equivalent circuit models for the lumped circuits
connected with the four ports are shown in Fig. 16(b). The
microstrip matching network is discretized into 16 385 tetrahe-
dron elements. The total simulation time is set to be 10 ns. The
total number of time steps is 200 000. The second-order vector
basis function is used for electromagnetic simulation, while
the first-order scalar basis function is adopted for thermal
simulation.
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Fig. 13. Temperature distributions of the structure on the plane of z =
0.25 mm at 0.5 ns obtained by (a) COMSOL software and (b) proposed
method.

Fig. 14. Temperature curves corresponding to different thermal time step
sizes.

First, the electromagnetic–circuital co-simulation and the
electromagnetic–circuital–thermal co-simulation are carried
out to further verify the accuracy of the proposed method.
In the electromagnetic–circuital co-simulation, the substrate
is supposed to be lossless with εr = 2.33. In the
electromagnetic–circuital–thermal co-simulation, the relative
dielectric constant of the substrate keeps unchanged. But the
loss of the substrate is considered with σ0 = 0.1. The thermal
parameters are ρ = 2330 kg/m3, Cρ = 1 × 10−8 J/(kg · K),
α = 0.1 (1/K), κ = 9 × 105 W/(m · K). In the thermal
simulation, all boundary surfaces of the structure are imposed
convective boundary conditions with heat transfer coefficient
h = 0.1 W/(m2 · K). The ambient and initial temperatures
are 293.15 K. An extra heat source of 36 kW is applied at the
position of the MESFET to imitate its heating effect. The volt-
age waveforms at port G, port D, port a, and port b obtained
from the proposed method agree well with those of COMSOL
software in Fig. 17. Significant changes can be observed in

Fig. 15. Transient electric field distribution on the plane of z = 0.25 mm
at 4 ns obtained with (a) kT −EM = 1, (b) kT −EM = 2000, and (c) kT −EM =
8000.

Fig. 16. Microwave power amplifier. (a) Microstrip matching network.
(b) Equivalent circuit models of MESFET, source port termination, and
loading port termination.

the voltage waveforms of Fig. 17(c) and (d) compared with
those of Fig. 17(a) and (b), which means that the thermal
effect can greatly influence the electrical property of the power
amplifier. It cannot be ignored if a near-reality simulation
result is expected. Moreover, the temperature distributions on
the plane of z = 0.7874 mm at 9.5 ns obtained by the proposed
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Fig. 17. (a) Voltages at port G and port D obtained by electromagnetic–
circuital co-simulation. (b) Voltages at port a and port b obtained by
electromagnetic–circuital co-simulation. (c) Voltages at port G and port D
obtained by electromagnetic–circuital–thermal co-simulation. (d) Voltages at
port a and port b obtained by electromagnetic–circuital–thermal co-simulation.

Fig. 18. Temperature distributions on the microstrip structures of the match-
ing network at 9.5 ns obtained by (a) COMSOL software and (b) proposed
method.

method and COMSOL software are shown in Fig. 18. A good
agreement can be observed.

Second, we perform a small-signal analysis to calculate the
S-parameters of the microwave amplifier. Once the system
reaches its steady state, a modulated Gaussian pulse centered
at 6 GHz is added on top of the dc signal, while the active
device still operates in the linear region. Same process as
above, the electromagnetic–circuital co-simulation and the
electromagnetic–circuital–thermal co-simulation of the model
are carried out. The electrical and thermal parameters remain
unchanged. The voltage waveforms of port G, port D, port a,
and port b are shown in Fig. 19. Then we use the voltages
at Port a and Port b to calculate the S-parameters of the
MESFET microwave amplifier. Fig. 20 shows the S11 and
S21 curves based on electromagnetic–circuital co-simulation
and electromagnetic-circuital–thermal co-simulation. Apparent

Fig. 19. (a) Voltages at port G and port D obtained by electromagnetic–
circuital co-simulation. (b) Voltages at port a and port b obtained by
electromagnetic–circuital co-simulation. (c) Voltages at port G and port D
obtained by electromagnetic–circuital–thermal co-simulation. (d) Voltages at
port a and port b obtained by electromagnetic–circuital–thermal co-simulation.

Fig. 20. S11 and S21 curves based on electromagnetic–circuital
co-simulation, electromagnetic-circuital–thermal co-simulation with kT −EM =
1 and electromagnetic-circuital–thermal co-simulation with kT −EM = 2000.

differences induced by the thermal effect can be observed
in Fig. 20, which proved the importance and necessity of
electromagnetic–circuital-thermal co-simulation.

Finally, asynchronous electromagnetic–circuital–thermal
co-simulation is tested with kT −EM = 2000 compared with the
synchronous electromagnetic–circuital-thermal co-simulation
with kT −EM = 1. The S11 and S21 curves are shown in Fig. 20.
The results obtained by asynchronous co-simulation agree well
with those obtained by synchronous co-simulation. Besides,
the corresponding CPU times are given in Table VIII. More
than 40% of the CPU time can be saved for thermal sim-
ulation with asynchronous electromagnetic–circuital–thermal
co-simulation.

IV. CONCLUSION

An efficient transient electromagnetic–circuital–thermal
co-simulation method is proposed in this article. The
electromagnetic simulation, circuit simulation, and thermal
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simulation are based on higher order DGTD method, mod-
ified nodal analysis method, and higher order FETD method,
respectively. A physics-based coupling mechanism is con-
structed to achieve reasonable and accurate multiphysics sim-
ulation. Large-scale parallel technique is also implemented
to further accelerate the whole simulation process. The pro-
posed method provides a very effective and powerful solution
scheme for electromagnetic–circuital–thermal co-simulation,
which can be widely applied for the design of electronic com-
ponents and systems with coupled electromagnetic, circuital,
and thermal phenomena.
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