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Abstract— This communication presents a novel algorithm, namely,
the 3-D stability extensible spatial-filtering symplectic finite-difference
time-domain method (SF-SFDTD(4’4)) algorithm, as an enhancement to
the traditional finite-difference time-domain (FDTD2:2)) method. The
symplectic FDTD®9 method, which exhibits higher-order numerical
accuracy in both temporal and spatial domains, is utilized as the
basis for this algorithm. The primary objective of this research is to
overcome the limitations imposed by the Courant-Friedrich-Levy (CFL)
condition. To achieve this, the study leverages the SF technique to
establish an enlarged CFL condition within the proposed SF-SFDTD*4)
algorithm. Additionally, a novel hybrid subgrid technique is introduced
to accommodate arbitrary coarse/dense grid ratios within the simulation
domain. Specifically, the standard FDTD?:2) method is employed in the
coarse grid region, while the proposed SF-SFDTD*4) method is applied
to the dense grid region. This approach ensures that the entire simulation
can employ the same time increment determined by the stability condition
of the coarse grid, owing to the highly stable characteristic of the SF-
SFDTD*4 method. To confirm the accuracy and advantages of the
proposed SF-SFDTD“4) algorithm and its extended method of hybrid
subgrid technique, some numerical examples are carried out. The results
demonstrate the efficacy of the algorithm in terms of both efficiency and
memory requirement.

Index Terms— Spatial filtering (SF), subgrid technique, symplectic
finite-difference time-domain method (SFDTD).

I. INTRODUCTION

Successful applications of the finite-difference time-domain
(FDTD) method has demonstrated their strength in terms of scal-
ability and versatility [1], [2]. Nevertheless, this method exhibits
certain deficits, including 2nd-order accuracies in both temporal and
spatial domains, as well as an explicit characteristic that limits the
maximum temporal increment and leads to inefficiencies. To address
these limitations, an effective scheme is proposed based on high-
order (HO) accuracy to mitigate numerical dispersion. Initially, the
HO-FDTD¢*# algorithm is introduced, which achieves 4th-order
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accuracy in both spatial and temporal domains [3]. By adopting
lower mesh resolution and larger time increments, the efficiency and
memory consumption of the HO-FDTD algorithm can be reduced.
Additionally, the symplectic FDTD*¥ [symplectic finite-difference
time-domain method (SFDTD(4*4))] method is presented, which
combines the 4th-order accuracy in the spatial domain with the
application of a multisymplectic integrator propagator in the temporal
domain [4], [5]. The SFDTD®**4 method offers an accurate and
stable solution for long-term simulations compared to the standard
FDTD(2:2) algorithm. This is due to its energy-conserving character-
istics and preservation of the phase space volume of the Hamiltonian
system. However, the stability condition of the SFDTD*4 algorithm
is still subject to the constraints of the Courant—Friedrich-Levy (CFL)
condition. Therefore, the calculation efficiency is reduced when using
a small time step increment in the SFDTD®*4 method. Therefore,
it is crucial to develop a highly stable SFDTD*-4) approach while
maintaining high accuracy to facilitate its application in numerical
calculations. Additionally, applying the SFDTD** method to sub-
grid technique further enhances the calculation advantages of the
proposed highly stable SEDTD*4 method in electromagnetic (EM)
simulations.

In this communication, a highly stable 3-D spatial filtering
SFDTD*# (SF-SFDTD*#) method is proposed. The method
effectively addresses the CFL limitation observed in the standard
SFDTD*4 approach by leveraging SF techniques as previously
discussed in references [6] and [7]. Importantly, our proposed
method does not require a complete reformulation of the standard
SEDTD*4) method, making it more practical for implementation.
The SF-SFDTD**# method shares similar updating formulas for
field components with the standard SFDTD*-4) approach. However,
it incorporates an SF procedure in each iteration, making it easier to
implement in practical applications. The study performed numerical
experiments with the SF-SFDTD**® method to verify its accuracy
and efficiency when compared to the standard SFDTD*4 method.
Additionally, the study introduces a subgrid scheme that combines the
proposed SF-SFDTD™**® method with the conventional FDTD(2:2)
method. The SF-SFDTD*# method is employed in the dense grid
region, while the FDTD?2) method is used in the coarse grid region.
To ensure overall stability, the temporal increment is determined
based on the stability condition of the coarse grid. Notably, the
SF operations expand the stability condition of the SF-SFDTD*4)
method, eliminating the need for timing synchronization between
coarse and dense regions. Additionally, a more versatile hybrid
subgrid technique is introduced which allows arbitrary configuration
of proportions between coarse- and dense-grid generation, thereby
enhancing its generality. The advantages of the proposed hybrid
subgrid method are confirmed through the simulation of a 3-D EM
structure with inhomogeneous and dispersive media.

The communication is structured as follows. Section II presents the
SF theory for the 3-D SFDTD™** method. This section includes the
derivation processes for extending the CFL limitation of the standard
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SFDTD** method, the numerical dispersion analysis of the pro-
posed method, and the technique of combining the SE-SEDTD*¥
method with the FDTD2-2) method to develop the subgrid technique.
In Section III, several numerical models are simulated to demonstrate
the accuracies and efficiencies of the proposed SF-FDTD*% method
and the hybrid subgrid SF-SFDT D4 method. Finally, the commu-
nication discusses and draws the conclusions.

1. SF THEORY FOorR SFDTD®**4 METHOD

A. Extending the Stability Limitation of the 3-D SFDTD“®
Method

For the standard 3-D SEDTD*¥ approach, the CFL limitation is
derived from the following equation introduced in [4]:
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1 & !
EAEEDN [cgmz (n§+n§+n§)} @)
=1
g = Z ciydjcindjy, ... ciyd)

I<ii<ji<ia<)2
<-<ij<ji<m

+ 2
I<iy<ji<ia<ja
<<Zip<jism

2 +n}+ 2
1\2[9 . [keAx 1 (3keAx\]?
=—4x — — sin — — sin
Ax 8 2 24 2
1\2[9 kyA 1 3kyAy\ 12
+ | — Zsin [ =2 Y — —sin y2y
Ay) |8 2 24 2
1\2[9 . (k:Az 1 . (3k:Az\7?
+{— — sin — — sin .
Az 8 2 24 2
4

The value of g; could be calculated via the symplectic integration
coefficients ¢; and d;; m denotes the sub-time steps in each iteration.
Let

ciydjcipdjy, ..., cidj 3)

Q=—/2 (n}+n} +12). )

Then according to (1) and (2), the inequality for the time step used
in standard SFDTD*4) method is derived as

At < (A/co) x (3.003/2) x (1//Q). (©6)

To ensure stability, Ar must be smaller than the upper limit of
the right hand of (6). Considering the condition sin (ks As/2) = 1,
sin (3kgAs/2) = —1(s = x, y, z) ensures a real wavenumber. There-
fore, it is assumed that Ax = Ay = Az =A and sin (ksAs/2) =1,
sin BksAs/2) = —1(s = x, y, z). Next, the CFL limitation of the
standard SFDTD®*% can be obtained from (6)

Atcpr, < 0.7431 x A/cg. ©)

The CFL limitation of the standard SFDTD®**% method in (@)
ensures that all spatial-frequency components remain stable, which
is the primary constraint of the time-step size. In effect, the
excited signal only engages a small part of the bandwidth. The
remaining part of the bandwidth contains no signal information,
but increases the numerical dispersion which constrains the time
step size for stable computations. For instance, to improve the
numerical accuracy, the grid size A is usually less than Ap;,/10. If
A = Apin/10, then the highest wavenumber of the excited signal is
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Fig. 1. Value of Q(6, ¢) versus 0 and ¢ with kmax A = 0.17.

khighest = 27/Amin = 7/(5A) [8]. However, according to the
Nyquist sampling theory, fmax = 1/(2A) is the maximum spatial
frequency in the SEDTD*4 calculation, thus the wavenumber ko =
27 /Amin = 27 fmax = 27/(2A) = m/A is the greatest wavenumber
that the SFDTD*#) can accommodate. Therefore, the wavenumber
from n/(SA) to w/A does not carry source excitation but generate
undesired dispersion errors. Fortunately, these spurious frequency
components can be filtered out and almost do not influence the
accuracy of the numerical method. For example, assuming that the
available wavenumbers k in each direction are located at a radius
kmax (kK < kmax) [6], [7], kmax is the filtering wavenumber, and the
spatial frequency components beyond kmax and /A is filtered out,
the numerical wavenumber k is defined as

(kx, ky, kz) = (kmax Sin 6 cos ¢, kmax Sin 6 sin ¢, kmax cos0)  (8)

where 6 and ¢ are the propagation angles, substituting (8) into (5),
then we have

Q0. ¢)
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Fig. 1 shows the value of Q(6, ¢) varies with 66 and ¢ at the
fixed parameter kmaxA = 0.17. The maximum value of the function
0, ¢) is obtained at 8 = arcos+/1/3 =~ 0.304w, ¢ = 0.257.
Note that the calculation results reveal that the maximum values of
0@, ¢) located at the same point (¢ = 0.304w, ¢ = 0.257) for
different values of kmaxA. Thus, by substituting 6 = 0.3047 and
¢ = 0.257 into (9), we can get the maximum value Qmax(0.3047,
0.257), and then according to (6), the condition for Atgf is derived as

max A

A 3.003 1 A
Afgp < — X X =0.7431 x — x CE
€0 2 Qmax €0
= AtcpL, x CE (10)

where Atcpr, is the CFL limitation of the 3-D standard SFDTD*4
method and CE denotes the extended factor and is expressed as

CE = 2.206/v/Qmax (kmaxA). (11)

As shown in Fig. 2, the values of CE are greater than 1 for the
kmaxA from O to . Therefore, the upper limit of the Atgp in (10)
is greater than that of the Atcpp in (7).
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Fig. 3. Value of relative phase velocity errors Ep in (14) for A = Apyin/10,

A = Amin/20, and A = Apyin/40.

B. Numerical Dispersion Analysis of SF-SFDTD## Method

The variation between numerical propagation velocity and phys-
ical propagation velocity is a significant indicator for determining
the numerical dispersion property of the numerical method. The
numerical dispersion equation of the standard SFDTD*4 method
is written as

I < 2..2(2 2, 2\
wAt = arccos 1+§Zgl [COAI (nx—l—ny—i—nz)] (12)

After substituting the extended time stability condition of Afgg in
(10) into the dispersion relation of standard SFDTD®**® method
[see (12)], for the wave propagating along the angles of 6 = 0.304x,
¢ = 0.304m, thus the numerical phase velocity of the proposed 3-D
highly stable SF-SEDTD*4 method can be derived as
1
w =
AtcpL % CE (kmaxA)

1 m
x arccos | 1+ 5 I_El 81 [c(z) (Atcpr, x CE (kmaxA))2
2 1
xQ (kp, 0.3047, 0.2571) /A } (13)

It should be noted that the numerical wavenumber kmax in (9)

is chosen as kp, then, the relative numerical phase velocity error is
defined as

E, =20log (Jvp — vo| / lvol)

and vp = w/kp is the numerical phase velocity.
Fig. 3 shows that the relative phase velocity errors (E;+) of the
SFE-SFDTD®**4 method vary with kmax A.According to the results of

(14)
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Figs. 2 and 3, it can be concluded that the relative phase velocity
error reduces when A decreases.

C. Application of SF -SFDTD%4 Method in Subgrid Scheme

In this study, a novel subgrid technique is proposed by combining
the standard FDTD(22) method and the SFE-SFDTD**) method
is presented. The field components within the coarse grid region
are updated through the implementation of the standard FDTD2:2)
method, while the SF-SFDTD™** method is applied to the dense
grid region. This approach allows for the relaxation of the time
step beyond the CFL limitation. Due to the extended stability of the
SF-SFDTD**¥ method, a larger time step that satisfies the coarse
grid CFL condition can be chosen for the dense grid region. One
advantage of this technique is that it eliminates the need for temporal
domain interpolation, as the interpolation scheme only needs to be
implemented in the spatial domain. In a 3-D subgrid scheme, there
are six interfaces between the coarse and dense grid regions. For
the sake of simplicity, we will focus on the spatial interpolation
procedures for one interface. As shown in Fig. 4, the dense grid
ex values on the interface are unknown and cannot be obtained using
the SE-SFDTD*4 method. Therefore, to determine the dense grid
ex value on the interface, spatial interpolation can be performed
within the coarse-grid domain on the interface.

Fig. 5(a) illustrates the distribution diagram of ey (Ex) on the
interface between the coarse and dense grids for jp = ja (jf = 1)
as shown in Fig. 4. The subscript F' denotes the coordinate in the
coarse-grid region while the subscript f denotes the coordinate in the
dense-grid region. Within the dense-grid domain, the value ex (i r+
172 + my, 1, ky + my) can be obtained using the following spatial
interpolation expression.

Case 1: my < M/2.

1
ey (l'f + 3 +my, Lky +m2)

M A2m )M -my+1) (. |

= M2 Ey 1F+§v]A,kF
M =2mi+1)(M —mpy+1) . 1 .

+ 2M2 E; lp— =, ,]A7kF
(M +2my—1)(mpy—1) . (. 1.

+ Y7e EY lF+§,]A,kF+1
M=2m+D)my—1) , (. 1

+ Y70 Ex\ir = 3-Jjakp+1) (15

Case 2: M/2 <m| <M

1
ex (if+5+ml’17kf+m2)

GM —2mi + )M —ma+1) (. 1 .

= 2M2 E;Cl a + 51 ]Aka
Cmy—M—-1)(M —my+1) . 3 .

+ M2 Ex\ir + 3. jakr
3M —2my 4+ 1) (mp — 1 1

4 12M2)( 2 )E;’(iF—I—E,jA,kF-i—l)

+(2m1—M—1)(m2—1)En(

3
e i zF+f,JA,kF+1) (16)

2

where m| and my represent both integers, 1 < m|, mpy < M, M
denotes size ratio between coarse and dense grid. /r and kr on the
interface denote grid coordinates of the coarse grid in the x- and
z-directions (ig <if <ip, ka < kr < kp), respectively. Similarly,
iy + my and k¢ + my on the interface denote grid coordinates of the
dense grid in the x- and z-directions (i f = MX (ip — i), ky = MX
(kp — kgp)), respectively. (ia, ig), (ja, jB), and (ka, kp), refer to
the front and rear interface along x-, y-, and z-directions, respectively.
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In Fig. 5(a), ey in the box on the left belongs to case 1, and ey is
calculated by (15). While ones in the box on the right belong to
case 2, (16) is employed to carry out the interpolation, therefore, we
could obtain Ey1 = Ex(ip + 1/2, ja, kFp), Exo = Ex(ip + 172, j4,
kp+ 1), Exs = Ex(ip —1/2, ja. kp), Ex3 = Ex(ip —1/2, ja. kp),
Eyy = Ex(ip — 112, ja, kp+ 1), Eys = Ex(ip + 3/2, ja. kp),
and E.¢ = Ex(ir + 3/2, ja, kp + 1). The spatial interpolation
method described above, which corresponds to an odd ratio between
the coarse and dense grids, is also applicable for the even ratio, as
depicted in Fig. 5(b). It is noted that SF-SFDTD™** method is used
in the dense grid region, i.e., a 4th-order finite difference scheme is
utilized to discretize the 1st-order partial derivative in space

(agl) = a x [F" (h+;)3—F” (h—;)j /a8
—ay X [F" (h+5) " (h—i)} /AS. (17)

where F denotes the EM fields, 6 = (x, y, z), and «; and o
represent the difference coefficients. According to (17), all the
dense grid electric fields e (magnetic fields h) should be calculated
by the surrounding eight magnetic fields h (electric fields e).
However, taking the field ey, located one dense grid away from
the interface as an example (illustration in the lower right corner
of Fig. 3, jy = 2), some magnetic fields h are missing if (17)
is used to update the field ey, the same problem occurs when
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calculating the magnetic field h,, located at half of a dense grid away
from the interface (illustration in the lower right corner of Fig. 3,
Jjf = 3/2). To solve this problem, the SF-SFDTD*2) method is
adopted. The method has 2nd-order accuracy in the spatial domain
to calculate these dense grid EM fields. Next, the rest of the EM field
in dense grid region are updated with the SF-SFDTD*4 method.

Following the update of the EM fields in the dense grid region,
the EM fields on the coarse grid located within the dense grid region
require interpolation and modification. This is achieved by employing
the subsequent equations (The x-direction is used as an example and
the interpolation modification formula remains consistent across other
directions).

If M is the odd

1 M
EYT? (l’F+< Jjr. kF) =2 (if+7, Jpt+liky+ 1)

2
(18)
1 1 M M
1. . 1. ,
H;H_ (lFs]F"‘EskF‘f'i):hz-i_ (lf+]7jf+77kf+7)
(19)
If M is the even, (20) and (21), as shown at the bottom of the

page.

In summary, the calculation steps of the proposed hybrid subgrid
technique are described as follows:

1) The coarse grid E and H fields are calculated with the standard
FDTD??) method.

2) The dense grid e fields on the interface of the coarse and dense
grid region are calculated through (15) and (16).

3) The dense grid fields e, located one of a dense grid away from
the interface, and the dense grid fields h, located half of a dense grid
away from the interface, are calculated utilizing the SE-SEDTD*2)
method.

4) The remaining dense grid e and h fields inside the dense grid
region are calculated using the SE-SFDTD*4 method.

5) The coarse grid E and H located at the dense grid region are
modified by (18) and (19) for odd ratio, or (20) and (21) for even
ratio.

III. NUMERICAL RESULTS
A. 3-D Resonance Cavity Model

The efficiency and correctness of the proposed SF-SFDTD*4)
method are confirmed using a 3-D metallic resonance cavity model.
The length of the cavity in each direction is set as 1 m, and a soft
Gaussian pulse with the expression of e_[(’_’O)/TS]Z, (Ty = 1.0618
ns and 7y = 4 Ty) is adopted. The spatial size of the cubic grid is
A = 0.05/3 m, and Az is set to be 0.99 times of Atcpr, [see (7)]
in standard SFDTD®** method. For the SF-SFDTD®*4 method,
Atgg = 3At, 5At, TAt (CE = 2.97, 4.95, and 6.93) are considered.
Fig. 6 displays the resonant modes of the 3-D cavity, calculated by
both the standard SFDTD*# method (i.e., CE = 0.99) and the
SE-SFDTD**4 approach (CE = 2.97, 4.95, and 6.93). The results
obtained by the SF-SEDTD*4 method with different time steps
(Atgp) are consistent of SFDTD** method. Finally, the execution
time of SEDTD** method and SE-SFDTD**) method are listed
in Table 1. The execution time of SF-SFDTD*# method is almost

n+1/2 (. 1 M .
e (ip+3+% j+ ks +1) o0
* FERIERE) T i P e L Mk 1
x fraT T LT LA
+1(; ; M+l M+l +1(; ; M+3 M+1
H”+]<ip jp—}-lkp—i—l):lx h' (lf+1,jf+ . kf+ 55 )—I—hﬁ (lf+1,jf+ =k + 55 ) 2
* , 2’ 2 4 +h1H (if+1,jf+MTH,kf+MTH)+hﬁ+l (if-l-l,jf‘f—MTH,kf-i-MTH)
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Fig. 6. Resonant frequencies of a 3-D cavity obtained by different methods.

TABLE I

EXECUTION TIME (S) FOR SFDTD®% aAnD SF-SFDTD*4 METHODS
(INTEL(R) CORE! 17-10700K CPU AT 3.79 GHz)

Method CE Time steps Execution time (s)
SFDTD“#4 0.99 10500 1326.32
SF-SFDTD“# 2.97 3500 1379.79
SF-SFDTD“* 4.95 2100 829.43
SF-SFDTD“# 6.93 1500 594.16

Fig. 7. Simulation configurations of the 3-D rectangular waveguide.

identical as that of the standard SFDTD*# method when CE = 2.97,
revealing that the efficiency of the SE-SEDTD** method surpasses
the SFDTD** method when CE is larger than 2.97.

B. Reflection Coefficient of Dielectric Slab

To further verify the accuracy of the SE-SEDTD“** method,
a study on the reflectivity characteristics of a dielectric slab was
conducted. A 3-D model of a rectangular waveguide containing a
dielectric slab (¢, = 16e; = 16) was considered for this purpose.
The dielectric slab, with a thickness of 30 nm, was positioned at the
center of the rectangular waveguide. Additionally, the convolutional
perfectly matched layer (CPML) was applied at both ends of the
simulation domain. Fig. 7 illustrates the configuration of the slab
within the waveguide, where a plane wave with a Gaussian pulse
propagates along the y-direction. The Gaussian function parameters
were set as Ty = 0.1062 fs, 190 = 4 Ts. The grid size was selected
as 0.2 nm. It is worth noting that the CFL limitation of the
conventional SEDTD*:4) algorithm is influenced by the grid size
along the direction of the propagating wave. Hence, the upper-limit
temporal increment (Afcpr,) in the standard SFDTD*4 method
is 1.287(d y/cg).

Fig. 8 presents the reflection coefficients obtained using the
SFDTD™**® method (CE = 0.99) and the SF-SFDTD®** method

I Trademarked.
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(CE = 297, 4.95, and 6.93). The rigorous coupled wave analysis
(RCWA) method is employed as a benchmark for comparison. The
results obtained by the SF-SFDTD™*4 method demonstrate agree-
ment with both the analytical results and the standard SFDTD*-4)
method. This finding confirms the efficacy of the SE-SEDTD“*4)
method as an efficient technique for EM model simulation. It is worth
noting that the calculation error between the analytical and numerical
methods increases as the time step increases. This is attributed to
the larger numerical dispersion error of the SF-SFDTD™*¥ method
with increasing time step. In addition, the presence of inhomoge-
neous permittivity within the calculation domain can also impact the
computational accuracy of the SF-SEDTD*4 method.

C. Subgrid Technique for Simulating GPR Scene

Additionally, to further verify the benefits of the proposed hybrid
subgrid technique, a simulation of a classical ground penetrating radar
(GPR) scene is conducted, as depicted in Fig. 9. In this scenario,
the transmitting antenna serves as the excitation source point in free
space, while the receiving antenna functions as the probe point for
receiving detection signals. The expression of the source is presented

3
— (/1) Zann sin2rnt/t), O0<t<Tt
n=1
0, other

pulse(t) = (22)

where the center frequency is 200 MHz, the relaxation time v =
1.55/ f¢, coefficients a; = —0.488, ap = 0.145, and a3 = —0.0102.

The simulated half-space model comprises an air layer and a soil
layer, with the frequency-dependent property of the soil described
using the multipole Debye model. To absorb EM waves, the CPML
is employed [9], [10]. The parameters for the soil’s multipole Debye
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Fig. 11. Relative calculation error of the hybrid subgrid SF-SFDTD*-4)

method with different ratios.

model are as follows: €00 = 3.2, 71 = 2.71 ns, Ag; = 0.75, 1p =
0.108 ns, and Agy = 0.3, and conductivity o = 0.397 x 1073 S/m.
The dimensions of the entire simulation domain are 4.8 x 4.8 x
4.8 m, with a coarse grid size of Ax = Ay= Az =0.06 m. Both the
transmitting and receiving antennas are positioned 0.3 m above the
soil surface, and the distance between them (Tx—Rx) is 1.5 m. The
two detection targets, a dielectric sphere and a dielectric cylinder,
are situated within the same soil layer. The dielectric sphere has a
relative permittivity of is 10 and a radius of 0.24 m. The dielectric
cylinder has a relative permittivity of 20, a radius of 0.18 m, and a
length of 0.48 m in the y direction. The centers of the sphere and
cylinder are located 0.6 m below the soil, with a separation of 1.2 m in
the y direction. Additionally, each subgrid region has dimensions of
0.6 x 0.6 x 0.6 m. For comparison purposes, purposes, the standard
FDTD%2) method employs a uniform dense grid (Axy = Ayy =
Azy = 0.02 m) as a reference for numerical results. Moreover,
to assess the versatility of the subgrid technology in refining the
coarse grid with odd and even ratios, different ratios between the
coarse and dense grid sizes are implemented in the proposed subgrid
technique. Fig. 10 illustrates the time-domain waveforms at the
receiving antenna, which are calculated using two hybrid subgrid
SF-SFDTD methods with coarse- and dense-grid ratios of 1:5 and
1:6, respectively, as well as the dense grid FDTD?2) method.
Subsequently, the quantified numerical error of the proposed method,
in comparison to the dense grid FDTD?2) method is calculated using
the following equation:

_ |Ez_danso - Ez_subgid }

E, = x 100%.
max |Ez_dansos |

(23)

Evidently, the small relative errors of the hybrid subgrid
SE-SEDTD** methods with ratios of 1:5 and 1:6 can be observed in
Fig. 11. These results provide compelling evidence for the accuracy of
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TABLE I

MEMORY COST (MB) AND EXECUTION TIME (s) FOR FDTDZ2) AND

HYBRID SUBGRID METHODS (INTEL(R) Core!
17-10700K CPU AT 3.79 GHz)

Memory Cost Execution Time
Method (MB) (S)
Dense grid FDTD?? 472.08 2759.15
Subgrid SF-SFDTD“* (M = 5) 107.03 264.31
Subgrid SF-SFDTD“* (M = 6) 196.25 552.54

the hybrid subgrid method in simulating the GPR scene. Additionally,
this method can realize odd and even times meshes for the coarse grid.
Moreover, Table II presents an analysis of the memory cost and CPU
time for various approaches. A comparison with the conventional
dense grid FDTDZ2 method reveals that the proposed subgrid
SF-SEDTD*4 method offers significant computational advantages
in simulating the GPR scene.

IV. CONCLUSION

In this communication, an efficient and highly stable algorithm,
namely, SE-SEDTD™*¥| is introduced. Theoretical analysis reveals
that the stability condition of the conventional SFDTD*-4) algorithm
can be extended beyond the CFL limitation by eliminating unstable
components in the spatial frequency domain. The SF method, in com-
parison to implicit numerical approaches, effectively extends the CFL
limitation without the need for complex formula derivation and matrix
operations. To confirm the advantages of the proposed algorithm
over the standard SEDTD*4) method, a numerical example analysis
is carried out. Additionally, the application of the SE-SEDTD¢*¥
method to the hybrid 3-D subgrid scheme is presented. This hybrid
subgrid technique allows for the generation of coarse and dense grids
in arbitrary ratios, showcasing its versatility. The hybrid subgrid
method exhibits significant advantages in terms of efficiency and
memory cost.
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