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Metasurfaces offer a paradigm shift in the nonlinear optics, controlling and enhancing of nonlinear effects at the
nanoscale, and offering new opportunities for applications in nonlinear optics, plasmonics and electromagnetics.
Particularly, nonlinear optical conversion efficiency is limited due to the inherent losses in metallic materials.
Nonlinear metasurfaces based on bound states in the continuum(BIC) can effectively increase the Q value and are
expected to further enhance the nonlinear efficiency. In this paper, a tri-capacitance-like metasurface supporting
both Friedrich-Wintgen quasi-BIC and symmetry-protected quasi-BIC is proposed to generates multiple high-Q
resonances in the spectrum. The coupling between perfect BIC and quasi-BIC mode in the multi-channel opti-
cal system corresponds to the storage and release of electromagnetic waves, respectively. At the same time, the
electromagnetic field is further enhanced at the resonant frequency, which can significantly improve the second
order nonlinear efficiency. In addition, due to the different generation mechanism, the frequency and amplitude
of the two resonances are easy to tune independently, which facilitates the sum and difference frequency gen-
eration (SFG and DFG). Therefore, the proposed nonlinear metasurfaces in this paper are of wide research value
in the fields of nonlinear optics, multi-channel communication and memory.

1. Introduction device functionality [7,8]. However, the development of metamaterials

for practical applications is impeded by the fact that the permittivity,

As an alternative of conventional optical devices, metamaterials,
which consist of periodic subwavelength metallic/dielectric structures
that resonantly couple to either or both components of the incident
electromagnetic field [1], exhibit an effective electromagnetic response
which is not found in materials in nature [2,3], meeting the re-
quirements for integration and miniaturization in modern electromag-
netic and photonic systems [4]. The electromagnetic properties of
metamaterials are mainly determined by the structural geometry and
the integrated material [5,6], and by designing artificial unitary struc-
tures capable of producing the desired electromagnetic response and
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permeability and refractive index are properties of three-dimensional
objects, while three-dimensional microscopic nanostructures still pre-
sent difficulties in fabrication [9]. As manufacturing technology
continue to develop, two-dimensional planar materials can be fabricated
by means of photolithography and nano-printing [10,11], and re-
searchers have begun to investigate metamaterials with single or mul-
tiple layers stacked on top of each other. These metamaterials are called
metasurfaces, two-dimensional equivalents of three-dimensional meta-
materials [12,13]. In optical systems, the design of structure and the
period of the sub-wavelength unit cell of the metasurfaces enables

E-mail addresses: renqun@tju.edu.cn (Q. Ren), caihc1990@163.com (H. Cai), pyw@tju.edu.cn (Y. Pang).

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.optcom.2023.129834

Received 20 February 2023; Received in revised form 29 July 2023; Accepted 13 August 2023

Available online 16 August 2023
0030-4018/© 2023 Elsevier B.V. All rights reserved.


mailto:renqun@tju.edu.cn
mailto:caihc1990@163.com
mailto:pyw@tju.edu.cn
www.sciencedirect.com/science/journal/00304018
https://www.elsevier.com/locate/optcom
https://doi.org/10.1016/j.optcom.2023.129834
https://doi.org/10.1016/j.optcom.2023.129834
https://doi.org/10.1016/j.optcom.2023.129834
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2023.129834&domain=pdf

X. Wang et al.

BICT

Dipole Mode LC Mode

Py

J
X10%(A/m?)
18

Optics Communications 549 (2023) 129834

il 1)
l change g
(2)
l break
symmetry

@)

Transmission

micuf ' J
foo 180 200 280 00

Frequency(THz)
()

10
08
02

LC Mode

Dipole Mode

Fig. 1. (a) The schematic view of proposed tri-capacitance-like metasurface. (b) The unit cell of the metasurface. (c) Transmission spectra forg =100 nm, §1 =52 =
50nm (1),g=61=62=50nm (2)and g =61 = 50 nm, § 2 = 120 nm (3). (d) The corresponding circuit model of metasurface. (e) and (f) show the current

distribution at frequency of BICI and BICII respectively.

wavefront modulation of the optical field [12,14,15], anomalous
reflection [16] and transmission [17] as well as local field enhancement
[13], overcoming the development challenges of metamaterials in
practical applications.

Nonlinear metasurfaces, with the independent development of
plasmonics and nano-devices [18], is a frontier in the field of meta-
materials [19,20]. Due to the ability of metasurfaces to convert incident
light into harmonics with anomalous polarization, nonlinear meta-
surfaces is also spotlighted and expected to further advance nonlinear
optics, achieving a robust nonlinear optical response in a more compact
size, and relaxing or completely overcoming the phase matching
requirement [21]. Typically, the quality factor(Q) of nonlinear meta-
surfaces is very low due to the inherent loss of metallic metasurfaces,
and their nonlinear conversion efficiency is very limited [22-24]. The
perfect bound states in the continuum(BIC) [25] with a theoretically
infinite Q value [26,27] would excite a greatly enhanced resonance
mode, which will likely lead to a fundamental breakthrough in optical
nonlinear efficiency [28]. BICs can be divided into two types, symmetry-
protected BICs [29-31], which arises from symmetry incompatibility
between bound states and external fields, and asymmetry-protected BICs
(called as accidental BICs), which arises from destructive interference
between the leaking channels of the system [25,32]. Accidental BICs can
be further classified into three cases, Fabry-Perot BIC [33], Frie-
drich-Wintgen BIC [32] and single-resonance parametric BIC [34].

Based on BIC, the design of the nonlinear metasurfaces unit cell
structure can also achieve electromagnetic filtering [35], super-
resolution [36-38] and optical modulation functions [39,40], which
further needs high-capacity optical channels in a compact device. Spe-
cifically, the mutual coupling between multiple optical resonances is
expected to enable multi-channel communication and applications of
SFG and DFG [41,42]. In addition, the different modes in the optical
resonance coupling process accompany different surface current distri-
butions, which macroscopically manifest as the storage and release of
electromagnetic waves that is a promising technology that can motivate
the realization of optical memories and quantum memories [43-48].

On the basis of the above research background, this paper proposes a
tri-capacitance-like metallic metasurface with high Q, multi-channel
resonance and electromagnetic wave storage and release. Firstly, the
Friedrich-Wintgen quasi-BIC is excited without breaking the structural

symmetry by adjusting the structural parameters to obtain a high-Q
resonance. Later, a symmetry-protected quasi-BIC is excited by
breaking the structural symmetry to achieve a two-channel optical
resonance. The frequency and amplitude of the resonances can be
adjusted by changing the structural parameters and are adjustable with
a high degree freedom due to the different generation mechanism.
Secondly, at the resonant frequency, the current distribution on the
metasurface is also different, corresponding to the storage and release of
electromagnetic waves, respectively. Finally, the electromagnetic field
distribution at the resonant frequency is simulated, and the study shows
that the metasurface structure designed in this paper can effectively
enhance the second-order nonlinear effect. The results show that the
metasurface we proposed have significant research value in second
harmonic generation (SHG), SFG, DFG, multi-channel communication
and memory.

2. Design and structure

The structure of the tri-capacitive-like metallic metasurface pro-
posed in this paper is shown in Fig. 1(a). The metasurface consists of the
metal Au and the substrate SiO2. The unit cell of metasurface is shown in
Fig. 1(b), where Px = 460 nm, Py = 760 nm, a = 250 nm, b = 100 nm, w
=100nm, m =1 =400 nm, h =220 nm, g =50 nm, §1 = 50 nm and
62 = 120 nm. In the simulation, we use the finite difference time domain
(FDTD) to study the spectral response of the metasurface. The plane
wave is vertically incident, the electric field is polarized along the Y
direction and the unit cell is set up with periodic boundary conditions to
simulate the infinite array of metasurfaces whose transmission spectra
are shown in Fig. 1(c), where g =100 nm, 61 =52=50nm (1), g =51 =
62 =50 nm (2) and g = 61 = 50 nm, 52 = 120 nm (3). Firstly, keeping
the gaps between the left and right sides of the metasurface structure
equal, the spectral response corresponds to the top of Fig. 1(c) when g =
100 nm, and the transmittance is the lowest at 176 THz. Then, keeping
continuously the gap between the left and right sides of the metasurface
equal and reducing the length of the middle gap to 50 nm, the trans-
mittance decreases significantly at 235 THz and the accidental quasi-BIC
is excited, which is recorded as BICI. Finally, keeping the left gap un-
changed and the middle gap still remain 50 nm, the right gap is
increased to 120 nm and the whole metasurface structure is no longer
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Fig. 2. Parameter sweep for the metasurface in the vicinity of the frequency of
BICI and BICII respectively. (a) Discrete spectra and color plot of simulated
transmission spectra with different g (Top) and A(bottom). For the BICI, fixing
the 61 = 62 = 50 nm and sweeping g from 0 nm to 220 nm. For the BICII, fixing
the g = 50 nm and changing A from 0 nm to 170 nm. (b) The corresponding Q
factor and band structure for the BICI and BICII.

symmetrical. A clear transmission valley can be observed in the trans-
mission spectrum at 135 THz and the symmetry-protected quasi-BIC is
excited, which is recorded as BICIL In this case, BICI is also shifted to a
higher frequency, shifting to 243 THz. The corresponding capaci-
tor-inductor model of the metasurface is shown in Fig. 1(d). The three
gaps correspond to the three capacitors, and the metals on the top and
bottom sides correspond to the inductors. The accidental BIC is formed
by the coupling of two modes, dipole mode and LC mode respectively.
For BICI, when g = 100 nm, the resonance mode is dipole mode, which
has a higher Q value (discussed later), the current direction at the sur-
face of the metamaterial is same, and the electromagnetic wave is
released. When g = 50 nm, the resonance mode changes from dipole
mode to dipole mode and LC mode coexist, the current direction is
opposite at the resonance frequency, and the electromagnetic wave is
stored, as shown in Fig. 1(e). Similarly, for BICII, when the structure
remains symmetric, the resonance mode of metasurface is dipole mode
at 135 THz with the same current direction and released electromag-
netic wave, as shown in Fig. 1(f). While in structure (3), the resonance
mode is LC mode and dipole mode coexist, the current direction is
opposite at the resonance frequency, and the electromagnetic wave is
stored. Therefore, by changing the structural parameters of the meta-
surface, multiple high-Q resonances can be excited in the spectral
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Fig. 3. (a) The level scheme of five-level system for proposed metasurface. (b)
and (c) show the corresponding absorption spectra and Q value with different
structural parameters for BICI and BICII respectively. The red and yellow lines
are obtained by increasing the original values by 0.5 and 0.8, respectively.

response, and the storage and release of electromagnetic waves can be
realized.

3. Results and discussions

In the previous part we discussed modal coupling to form accidental
BICs and symmetry-protected BICs, and explored the current distribu-
tion in different modes to enable the storage and release of electro-
magnetic waves. In the following section we will explain in detail the
process of modal coupling in meta-surface systems. For the accidental
BIC, the whole structure remains symmetrical, fixing the left and right
gaps unchanged, and the amplitude of the resonance can be changed by
adjusting the length of the middle gap. The system with two modes that
are coupled with two ports can be explained by temporal couple mode
theory, and the dynamics equation of its resonance amplitude can be
expressed as [49-52]:

da

i (jQ —Ta-+M"|s;) (@]
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where a is the resonance amplitude of the mode supported by the sys-
tem, w1 and w2 are the resonance frequencies of the two modes, y; and
7, are the corresponding decay rates, y, * and y, is the coupling coeffi-
cient generated by the damping, C represents the direct coupling be-
tween the input and output ports, M and N represent the coupling
between the output and input ports and the modes respectively, and in
this system M = N. |s+ > is the input wave amplitude and |s— > is the
outgoing wave amplitudes from ports 1 and 2, respectively. Bringing
formula (3)-(6) into Eq. (1)-(2) gives:
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The Hamiltonian of this coupled system is defined as:
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where k is the direct coupling coefficient between the two modes. By
adjusting the value of g, when the Friedrich-Wintgen condition is
satisfied.

k(ri — 7)) = Vrir(o1 — @) ®

An eigenfrequency will become purely real with the decay rate of 0.
This means that this eigenmode transforms into the prefect BIC with an
infinite Q value (Q = ®/2 y), which manifests itself in the spectrum as
vanishing linewidth, as shown in Fig. 2(a). This metasurface system is
symmetrical, so this BIC is called the accidental BIC. The accidental BIC
is obtained by the mutual coupling of two low Q mode resonances, and

the dipole mode and LC mode are coupled to each other to excite BICI.
The resonance frequencies of the two modes remain close to each other,
the transmission linewidth disappears in the spectrum and the Q value
tends to infinity when parameter g increases from 25 nm to 100 nm until
the Friedrich-Wintgen condition is satisfied. As the parameter g
continually increases, the resonance frequencies of the two modes
continue to shift, the Friedrich-Wintgen condition is not satisfied, the
transmission valley can be observed in the spectrum, and the Q value
shifts to a finite value. For the symmetry-protected BICs, fixing The
Hamiltonian of this coupled system is defined as the middle gap g = 50
nm to remain constant and adjusting the right gap so that the left and
right gaps are unequal, thus the symmetry of this unit cell of metasurface
structure is broken. We assigned A = |6 1 — § 2| and the whole structure
is symmetric where k is the direct coupling coefficient between the two
modes. By adjusting the value of g, when the Friedrich-Wintgen con-
dition is satisfied, an eigenfrequency will become purely real with the
decay rate of 0. This means that this eigenmode transforms into the
prefect BIC with an infinite Q value (Q = w/2 y), which manifests itself
in the spectrum as vanishing linewidth, as shown in and forms the
symmetry-protected BIC when 4 = 0, whose Q tends to infinity and
presents as a vanishing linewidth in the spectrum. With the increase or
decrease of § 2, the symmetry is broken and the BIC couples with the
extended states in the continuum each other and leaks into the vacuum.
According to the perturbation theory, the symmetry-protected BIC
transforms into a quasi-BIC, which Q value becomes finite and a distinct
linewidth can be observed in the spectrum. Moreover, its linewidth and
resonance amplitude increase with increasing A. Furthermore, it has
been found that the frequency and amplitude of BICI and BICII are
related to the intermediate gap width g and the structural asymmetry A
respectively by comparison, which gives a large degree of freedom to
modulate the two resonances separately.

In order to better describe the formation process of multiple reso-
nances in the system, which contains a ground state, two prefect BICs
and two quasi-BICs, a five level system is proposed as shown in Fig. 3(a).
In this five level system, |0> is the ground state, and the accidental
BICI|1> is realized when the structure remains symmetric and g = 100
nm, which has no interaction with the ground state and its absorption
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Fig. 5. The simulation calculates the second harmonic generation efficiency at
(a) BICI and (b) BICII with the same structural parameters as structure (2) and
(3) in Fig. 1(c).

close to 0. Because there is no mutual coupling with the extended states
in the continuum, the electromagnetic wave cannot leak into the vac-
uum and the Q value tends to infinity. Changing the parameter value of
g, the accidental BIC transforms into a quasi-BIC |2> with enhanced
absorption, mutual coupling with the output port, electromagnetic wave
leaks into the vacuum, and the Q value decreases and becomes finite, as
shown in Fig. 3(b). It is noted that a little absorption peak can be
observed on the right side of the perfect BIC in Fig. 3(b), which is formed
by the polarization resonance of the plasmon excitation, independent of
the modes coupling, and this small resonance is always present in the
absorption spectrum that is not affected by the change of the structural
parameters. Assigning the middle gap length g = 50 nm when the left
and right gaps are equal, no obvious resonance is observed in the
100-150 THz, which is manifested as symmetry-protected BICII |3> and
its Q value tends to infinity. Changing §2, the symmetry of the structure
is broken and the symmetry-protected BIC transforms into quasi-BIC
|4>, whose mutual coupling with the output port can increase the ab-
sorption, obvious resonance is observed in the spectrum and Q value
decreases and becomes finite. For the ideal BIC, the Q factor should
theoretically approach infinity. However, the inherent losses in the
metallic metasurface cause the Q value to become finite, corresponding
to the simulation results in Fig. 2(b), where the inherent losses are
mainly ohmic losses in the metal and dielectric losses in the substrate. In
this case, the energy loss from the system to the ports is 0.

In addition to the storage and release of electromagnetic waves and
multi-channel resonance, the proposed metasurface structure in this
paper also can achieve large local electric field enhancement and

Optics Communications 549 (2023) 129834

magnetic field enhancement due to its support of high Q resonance, the
simulation results of which are shown in Fig. 4. For the BICI, the electric
field is bound in the intermediate gap and the local field is significantly
enhanced when g = 50 nm. Compared to the initial electric field EO, the
electric field intensity increases about 8 x 10® times. When g increases
to 100 nm, the quasi-BIC transforms into the prefect BIC, and the local
field enhancement is significantly weakened, which is the result of the
input wave not couples with the hybridized modes in the metasurface
structure and the disappearance of the resonance linewidth. At the same
time, the local magnetic field is also significantly enhanced by shifting g
from 100 nm to 50 nm. Compared with the prefect BIC, the magnetic
field of the quasi-BIC is enhanced by about 3.7 T, and its distribution is
shown in Fig. 4(a) and (c). For BICII, the unit cell of the metasurface
constitutes the symmetry-protected BIC and its local field distribution is
weak when 62 = 50 nm. Increasing 52 to 120 nm breaks the symmetry of
the structure, and its local electric field is significantly enhanced in the
left and right gaps about 5 x 10® times compared to the initial field
strength EO, while its local magnetic field is also enhanced to some
extent inside the metasurface structure compared to the symmetry-
protected BIC. The magnetic field strength of the quasi-BIC is
enhanced by about 4 T and its distribution is shown in Fig. 4(b) and (d).

The main study of nonlinear optics is the interaction between pho-
tons under the irradiation of a high intensity light source. When light
strikes the material, the electrons are displaced, producing a scattering
field that oscillates synchronously and interferes with the incident light
[53]. If the amplitude of the incident light is large enough, the binding of
electrons in the material becomes increasingly asymmetric and the
bound electron orbitals are distorted. In this case, the optical response of
the material is related to the intensity of the incident field. The electron
orbital distortion and the resulting optical response can be described by
the polarization vector P with both linear and nonlinear terms:

P = egy'VE + egy® : EE + 0y® : EEE +- .. 9

where E is the local field, £0 is the vacuum dielectric constant, y(!) is the
linear polarization coefficient, and y® and y®® are the second- and
third-order nonlinear polarization coefficients, respectively. For the
second-order nonlinear optical process, the SHG efficiency can be
calculated by the following equation:

(10

L(L)  8a?d*L? P,(0) . , (AkL)
n= =—" sinc” | ——
11 (0) 8()}’12“,713)6‘3 S 2
where w is the fundamental frequency, d is the octave factor to replace
the polarization rate (d = y(®/2), L is the thickness of the unit structure,
¢ is the material dielectric constant of metasurface, c is the speed of light,
I, is the output octave light intensity, I; is the input fundamental fre-
quency light intensity, S is the cross-sectional area of the beam, where
|[E1 |2 = P;/S, E1 is the fundamental frequency light field intensity, P; is
the input optical power at fundamental frequency, Ak is the phase
mismatch factor, and Ak = 0 if the phase is matched. According to the
above equation, the SHG efficiency depends on the electric field strength
of the fundamental frequency light. In addition, the nonlinear efficiency
usually rises and falls in the ratio of (Q/V)", where Q is the quality factor
of the considered resonance, V is the cavity volume, and n is the
nonlinear order. The nonlinear optical efficiency can be increased by
10%-10° as the subwavelength metasurface cavity volume decreases and
the resonant Q value increases. From the previous simulation results, it
can be seen that the metasurface structure designed in this paper can
excite two high-Q resonances and significantly enhance the electric field
intensity at the resonant frequency by two parameter adjustments. The
study has calculated the SHG efficiency of the metasurface and the re-
sults are shown in Fig. 5. At the resonant frequencies corresponding to
BICI and BICII, the second-order nonlinear efficiency is significantly
enhanced, reaching 6 x 1077 and 1.2 x 10719, respectively. The dif-
ference in nonlinear efficiency at the resonance of the two quasi-BICs is
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related to the intensity of the local field. According to previous simu-
lations, the local field strength of the Friedrich-Wintgen quasi-BIC
excited by adjusting the middle spacing is higher than that of the
symmetry-protected quasi-BIC excited by breaking the symmetry.

4. Conclusion

In this paper, the designed tri-capacitance-like metasurface structure
excites the Friedrich-Wintgen quasi-BIC and the symmetry-protected
quasi-BIC by adjusting the structure parameters step-by-step to ach-
ieve two-channel high-Q resonance and local field enhancement, and the
second harmonic efficiency is enhanced at both resonant frequencies.
The simulation results show that the nonlinear efficiency at the Frie-
drich-Wintgen quasi-BIC is about 10° times higher than that of the
symmetry-protected quasi-BIC, which is related to the enhancement of
the local field. Moreover, the current distribution is different at the
resonant frequency corresponding to different structural parameters.
The in-phase current direction corresponds to the release of electro-
magnetic waves and the opposite-phase current direction corresponds to
the storage of electromagnetic waves. The proposed metasurface in this
research would be applied in nonlinear optics, multi-channel commu-
nication, and fast communication where electromagnetic wave storage
and release are required.
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