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1. Background — After Moore’s law

key performance metrics at advanced nodes are plateauing
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Era of the digital economy and massive connectivity leads to integrated hardware-
software driven applications (5G, IOT, Al, Cloud, Big Data, ...)
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1. Background — Complexity of Electronics (1)
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1. Background — Complexity of Electronics (2)

Bulk Waveguide Microwave Integrated Circuits, MICs Monolithic MICs, MMICs

Sheng Sun
UESTC Multilayered MMIC/LTCC Substrate Integration

Slide 5/26 Wei SHA



1. Background — Emerging Electronics

Optimizing Choices for Transistors on Multiple Fronts
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Organic TFT/FET 3D heterogeneous integration  quantum entanglement
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1. Background — EM-Multiphysics Simulation

EM compatibility/ interference (EMC/EMI)
signal integrity/ power integrity (SI/PI)

short-channel effects
quantum effects
field-circuit coupling
thermal-mechanical issue
electro-static discharge
parasitic effect
packaging

quantum )
tunneling/ carrier
onfinemeyt transport
thermal
conduction

mechanica
deformatio

vacuum
thermal
uctuation

quantum
transpor
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2. Analogy — Physical Behaviors of Photons

D: object size; A: wavelength

[{{E]
cEf a3
EEE 333
CEE a3
(144 mp

ray physics wave physics circuit physics
D>>\ D~A D<<A
: Full-wave solvers L
Asymptotic solvers FDTD: CST DC/AC circuit solvers
PO/PTD/GO/GTD/UTD/ ' nodal equation:

FEM: ANSYS, COMSOL
MOM: FEKO, ADS
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2. Analogy — Physical Behaviors of Electrons

1. Ballistic transport limited by mean free path (coherent, D <L_ ) : EM

-C

wave propagating in homogenecous media [ATK: NEGF + DFT]

14 nm technology [P S2 205

mesoscopic physics
quantum hydrodynamics

2. Diffusive transport limited by phase coherent length (back scattering
enhancement, D > L, . ...) : EM wave scattered by multiple scatterers
[Silvaco: Drift-Diffusion Model]

3. Anderson localization (metal-insulator transitions): EM waves in
random media

time-reversal property disorder increase (diffusion = localization)

No disorder Disorder level

£330 "
back scattering enhancement /»\ .A
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3. Governing Equations — From Classical to Quantum Worlds

electron photon
quantum : : :
y NEGEF/ TB/ DFT equation | Quantized Maxwell equation
Boltzmann equation Vector-scalar potential equation
Energy balance equation |Maxwell equation
Hydrodynamic equation | Parabolic wave equation
. Drift-diffusion equation | Ray equation
classical

Poisson’s equation 1s unique, which is valid in both classical and quantum fields!
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3. Governing Equations — Drift-Diffusion (DD) Equations Revisited

Level 1 (DD)
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Level 2 (Level 1 + heat conduction)
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Level 3 (Level 2 + energy-balance) Level 1+ (quantum corrected DD)
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3. Governing Equations — Hybrid Solvers (1)

QM + EM + DD
NEGF
4 : N
o = ——deG“(E)
Ohm’s Law , 2n
T=GFE \V‘V(r) = -4726p(r)

N\ o
V-J+a,—p=0

Drift-diffusion Equation
p=g(p—-n+N,-N,)

J.=quxE =kTu,Vx, x €{n,p}
ax \\U
VJ, £q—-q(R-G)=0 \
+£4—=4(R-G) J 7N\
Maxwell Equation /

V-D=p,V-B=0 J

VxE=—§, VxH =J+%
i i C. Y. Yam, etal. Chemical Society Reviews

44(7): 1763-1776, 2015
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3. Governing Equations — Hybrid Solvers (2)

EM-Circuit Model

T Circaitcield !
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H. H. Zhang, etal. IEEE Transactions on Antennas and Propagation 64(7): 3233-3238, 2016
W. Sui, Time-Domain Computer Analysis of Nonlinear Hybrid Systems, CRC Press, 2002
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3. Governing Equations — Hybrid Solvers (3)

. W.E. I. Sha, IEEE Journal on Multiscale and Multiphysics
ClﬂSSlcal EM + Quantum EM Computational Techniques, 3: 198-213, 2018.
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0
Fluctuation-dissipation theorem

thermal issue

Copper heat spreader

Hot-side thermistor (T, ) Heater
Emitter (T,)
Gap (d) <
Receiver (T,)
Cold-side thermistor (T;)

Cooler
Heat flux meter

Copper heat spreaders

heat radiation near- ﬁ'eld heat transfer

<oT*A )\T |X|3 A

ImX ' V}

VACUUM
FLUCTUATIONS |
CASIMIR PLATES
J. DeSutter, etal. Nature Nanotechnology F. Intravaia, etal. Nature Communications
14:751-755, 2019 4:2515,2013
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3

. Governing Equations — Remarks

Circuit solver 1s fastest; EM/DD solver is fast; QM solver is slow. Hybrid
QM-EM-DD-Circuit solvers are recommended.

For Intel corporation, quantum simulation (DFT/ TB/ NEGF) costs 90% of
computer resources to carry out 10% of task. DD simulation costs 10% of
computer resources to carry out 90% of task.

DD model can be modified for modeling new materials based electronic
devices (organic, perovskite, graphene, etc). Energy-balance equation may
be good for short-channel effect (velocity overshoot, thermoelectric
diffusion, and ballistic transport).

EM + Circuit + DD solvers are still mainstream multiphysics solvers for
emerging electronics. But quantum corrections should be incorporated
(density-gradient theory, field-temperature-channel length dependent
mobility, etc).
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4. Numerical Strategies — Coupling Schemes

Maxwell’s equations

JdB ~ ~
VxE:—a— < VXE=-jwB
t

1. Coupling by current (resulting from
carrier transport or electric circuit)

VxH=J+aa—D & VxH=J+ jwD

I

2. Coupling by constitutive parameters | o
(permittivity and permeability) V-D=p & V-D=p

V.B=0 & V-B=0

3. Coupling by geometries and

boundaries Current continuity equation

J .
v-J+—a’3=o o V-J+ jap=0
I/
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4. Numerical Strategies — General Forms

Transient form Steady form

_”3” = fi(uy.uy.0;(115))

!af 1 — J1 .t G U _!~f1(ff1‘ff2‘(11(ffl))=0
-ﬂul = f5 (51505 (1)) /2 (25.2y.0,(211)) =0

L Ot

physical fields: u,, u, (scalar or vector)

physical parameters: c,, ¢, (scalar or vector)
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4. Numerical Strategies — Multiscale in Space

Discretization Rules

Electromagnetics (EM): dielectric wavelength or skin depth
Drift-diffusion (DD): Debye length
Quantum Mechanism (QM): electron wavelength

Circuit: No spatial grid

Strategies

Alel | |

e

| I I |
1 1 - 1 >

X
K. J. Willis, etal. Journal of

Computational Electronics 8: 153, 2009

1. Different spatial grid sizes are adopted for different systems. From coarse-to-fine
grids, lifting or interpolation is used, and from fine-to-coarse grids restriction,
integration or anterpolartion 1s used. Alternatively, the grids with basis functions of

different orders are adopted.

2. Remove spatial grids in one system by the reduced eigenmode/eigenstate expansion

technique (Computer Physics Communications, 215: 63-70, 2017).

Remarks

Stability issue and physical conservation (charge, flux, momentum, energy, etc)
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4. Numerical Strategies — Multiscale in Time (1)

Discretization Rule

EM: propagation time or lifetime (for a photon)
depends on device sizes, group velocity, absorption coefficient, quality factor, etc.

DD: relaxation time (from non-equilibrium to equilibrium states)
depends on mean free path, coherence length, velocity of electron, etc.

QM: transition time (from an energy level to another) and decoherence time
depends on field intensity, dipole moment, EM environment, etc.

Circuit: RLC delay time (from transient to steady states)
depends on resistance, capacitance, and inductance.

Timescale is important ! (0) Envelope

Azl
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4. Numerical Strategies — Multiscale in Time (2)

Strategies

1. When one system/process has several times faster timescale relative to another, a
simple strategy 1s to use an integer multiple of the faster timescale for the slow
timescale.

2. Explicit scheme for fast timescale or linear/non-stiff problem and implicit for the
slow timescale or nonlinear/stiff problem.

Explicit (7)) =u,(7,)+ A, £ (u, (2,). 0.0, (1))

Implicit #(7,,,) =u,(7,)+ A £ (o, (2, 1) 215, ¢, (1))

D. E. Keyes, etal. International Journal of High Performance Computing Applications 27(1): 4-83, 2013
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4. Numerical Strategies — Multiscale in Time (3)

Strategies (Cont ...)

When one system/process has an extremely (> 102 ~107) faster timescale that the other
processes, we can use the one-way non-self-consistent coupling or directly insert the
faster physical quantity into the other PDE systems.

1. Electromagnetic-thermal problem (Maxwell & thermal-conduction equations)
propagation of electromagnetic pulse is much faster than diffusion of thermal flux.

2. Exciton delocalization and diffusion-dissociation problem in organic electronics
delocalization is ultrafast (~ fs) and diffusion-dissociation is slow (~ ps).

Step II: diffusion ...
& dissociation .

o I
@ Ste;: 1 ultrafz;;st
defgcalization

ey
H. H. Zhang, etal. Scientific Reports Z. S. Wang, etal. Journal of Applied Physics
8: 2652, 2018 120(21): 213101, 2016
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4. Numerical Strategies — Numerical Methods (1)

Coupled evolution of a transient multiphysics problem

explicit
u— f; (u" Uy ,C (”"))
A = filuy cuy .00 (a5
wy " —uy .0 ISP T 0
T:f:(u:ﬂ] .Gy (2 _))

T

No sparse matrix inversion
Stability 1s bad
Conditionally stable

r'a )
i—Hl:_ﬂ("pﬂz-fl(”z))
| ot

)

i — U, = f‘.\ U~ . U .C'j{” }
Pt CRALICY)

semi-implicit

n+1 n
Hl - ”1 nsl  n N
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Ji\t 2.6\ )

A

I
+1
ul —ul

1 +1 ‘ 1
- Gl ™ e })

t

Sparse matrix inversion
Stability is better
Conditionally stable

implicit
n+l n
u' o —u -
1 +1 )
L= A cas )
Af

n+l n
fl"\ —If", 1 +1 . 1
e — (u;’* ot N ))

I

Newton’s method in each step

Stability 1s best
Unconditionally stable
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4. Numerical Strategies — Numerical Methods (2)

Equilibrium of a multiphysics problem (the coupling concepts are also applicable to the

transient problems)

strong coupling
Newton’s method

't =uf-J! (_u"")F(_u’1 )

o, I |
. B_F _ du, du,
du |df, df,

| duy  du, |

DD equations

!fl (14y.21,.¢,(14,)) =0
I[_f;f (2y.1y.0,(24)) =0

weak coupling
self-consistent solution

f1(”1 H; ¢y (14 )):

I

k+1  k+l k+1-
fg(u; .0y )=0

EM-QM
EM-circuit

--»

F(u.c(u))=0

one-way coupling
sequential solution

|f1 (#,)=0
l,fl (245.2,.0,(11)) =0

EM-thermal
organic electronics
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5. Conclusion

EM-Multiphysics simulation for emerging electronics 1s a very challenging field.
There 1s no universal panacea.

.

2.

We have to understand electronics problem with a critical/deep physical insight.
We have to figure out the coupling strategies and numerical solutions.

We have to know the pros and cons of various numerical algorithms.

We have to i1dentify the physical bounds of a multiphysics model.

We have to learn as much as possible to take a new look at governing equations.
We have to collaborate with mathematicians, physicists, chemists, engineers, etc.

We have to train our students for working in the multidisciplinary fields.
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EM-Multiphysics Education in Engineering College

Weng Cho Chew

Knowledge Grows Like a Tree Purdue University

Real-World Applications and Technologies

Application-Based Engineering

Science-Based Engineering -

Mathematics, Physics, Science
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