
Electromagnetics-Multiphysics Simulation for Emerging Electronics

Wei E.I. Sha (沙威)

**College of Information Science & Electronic Engineering
Zhejiang University, Hangzhou 310027, P. R. China**

Email: weisha@zju.edu.cn

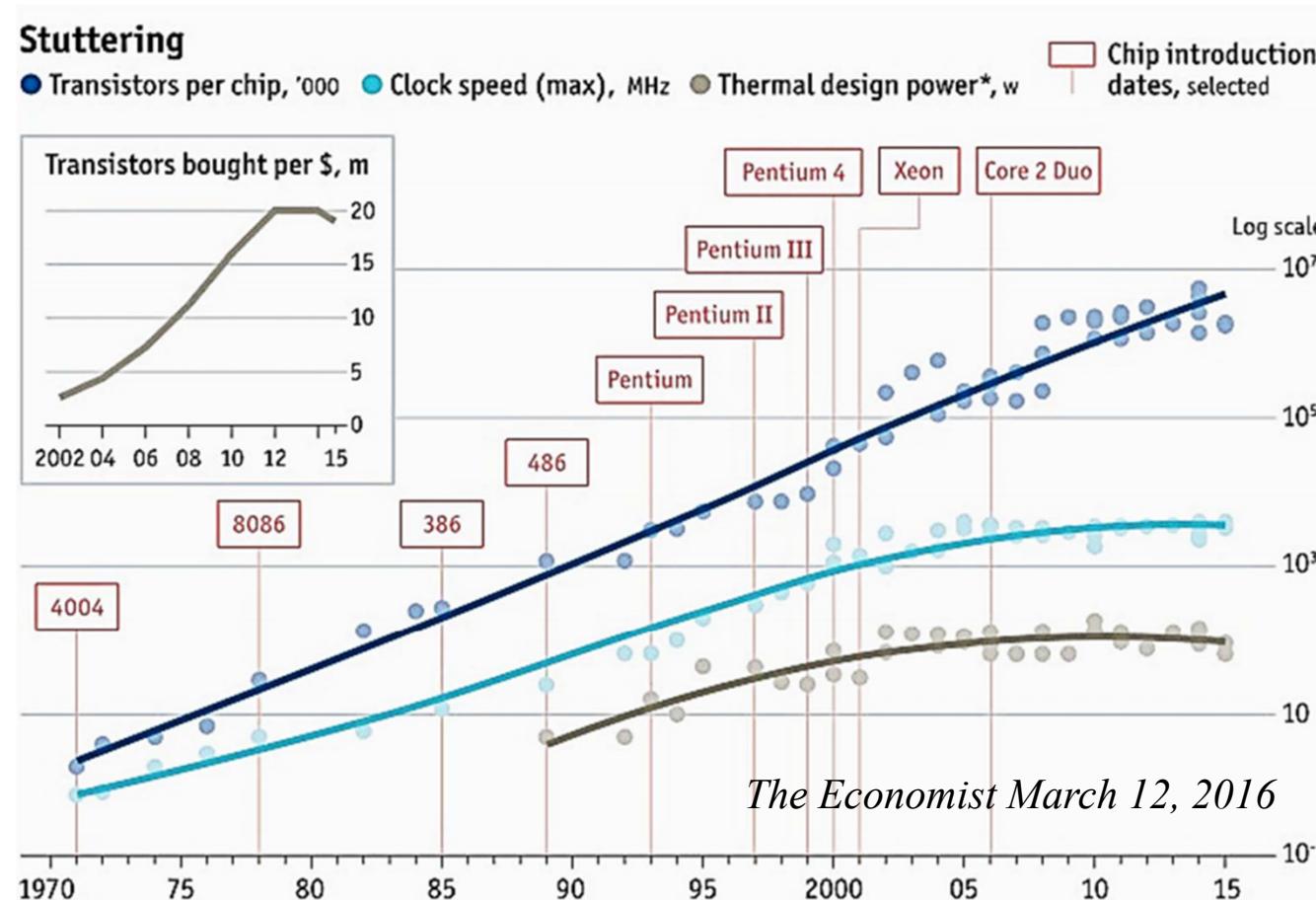
Website: <http://www.isee.zju.edu.cn/weisha>

Contents

- 1. Background**
- 2. Analogy of Photon and Electron**
- 3. Governing Equations**
- 4. Numerical Strategies**
- 5. Conclusion**

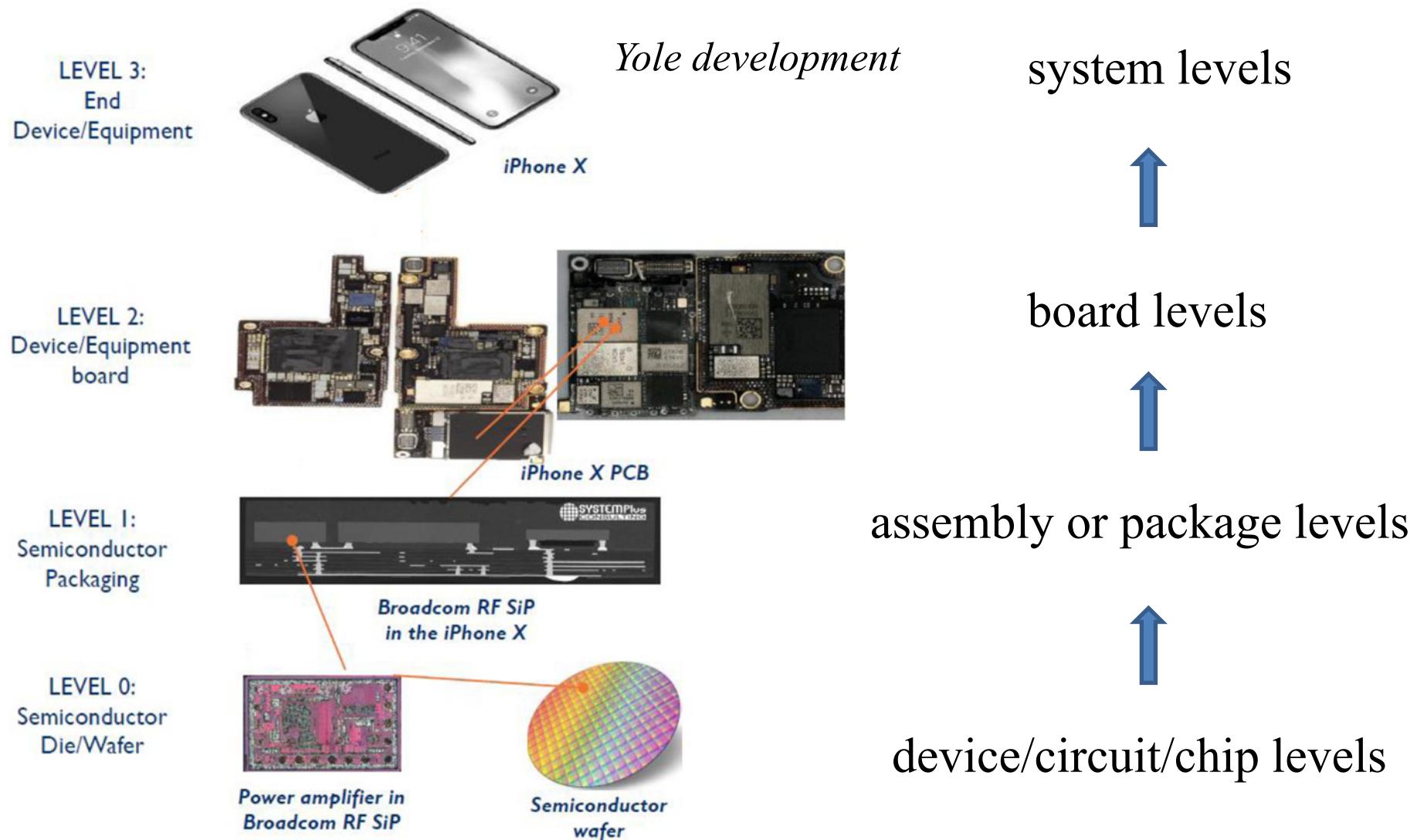
1. Background — After Moore's law

key performance metrics at advanced nodes are plateauing



Era of the digital economy and massive connectivity leads to integrated hardware-software driven applications (5G, IOT, AI, Cloud, Big Data, ...)

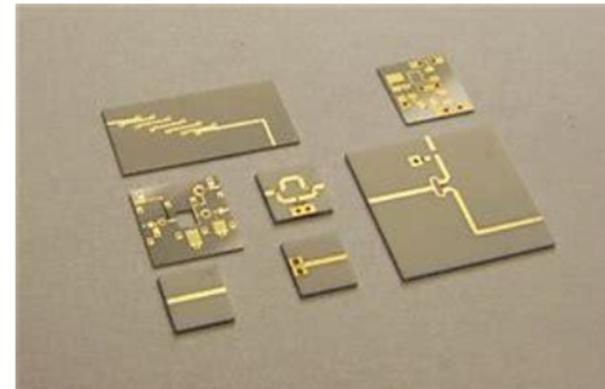
1. Background — Complexity of Electronics (1)



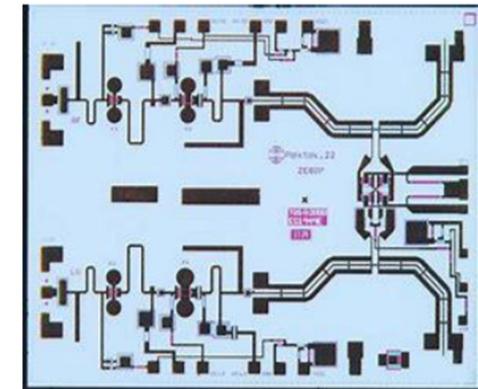
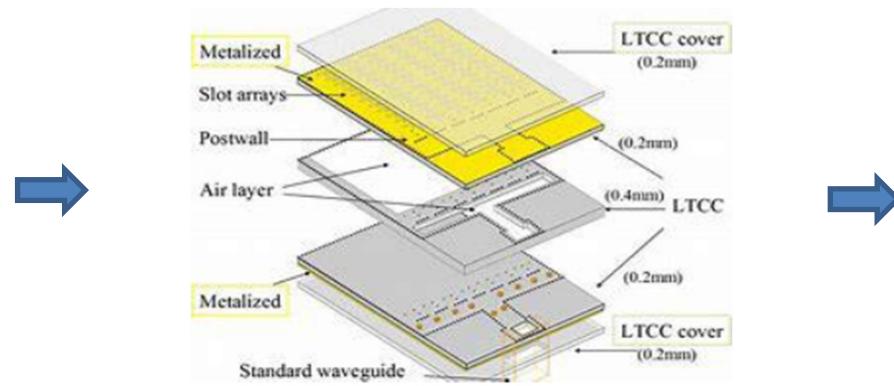
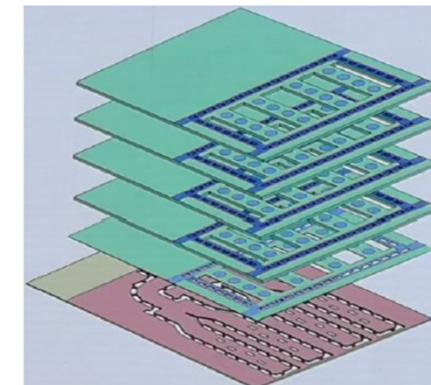
1. Background — Complexity of Electronics (2)

Bulk Waveguide

Microwave Integrated Circuits, MICs



Monolithic MICs, MMICs

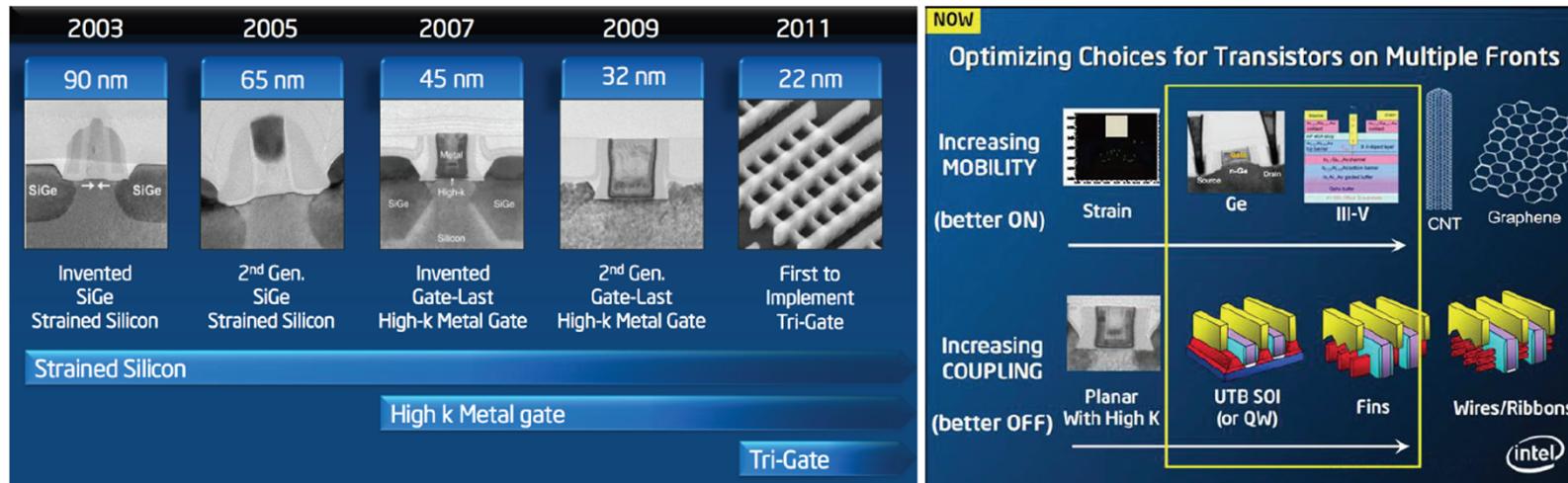


Sheng Sun
UESTC

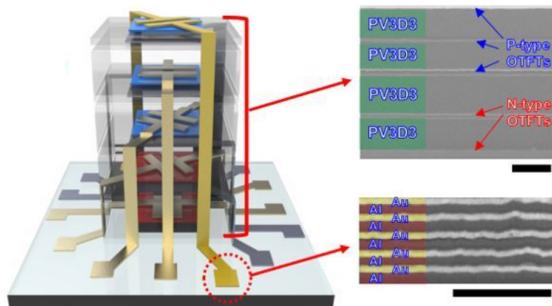
Multilayered MMIC/LTCC

Substrate Integration

1. Background — Emerging Electronics

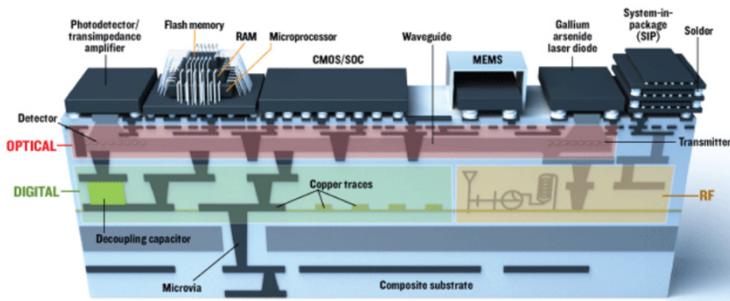


New Materials/ Tech



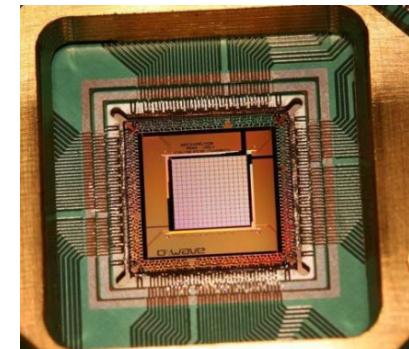
Organic TFT/FET

New Architecture



3D heterogeneous integration

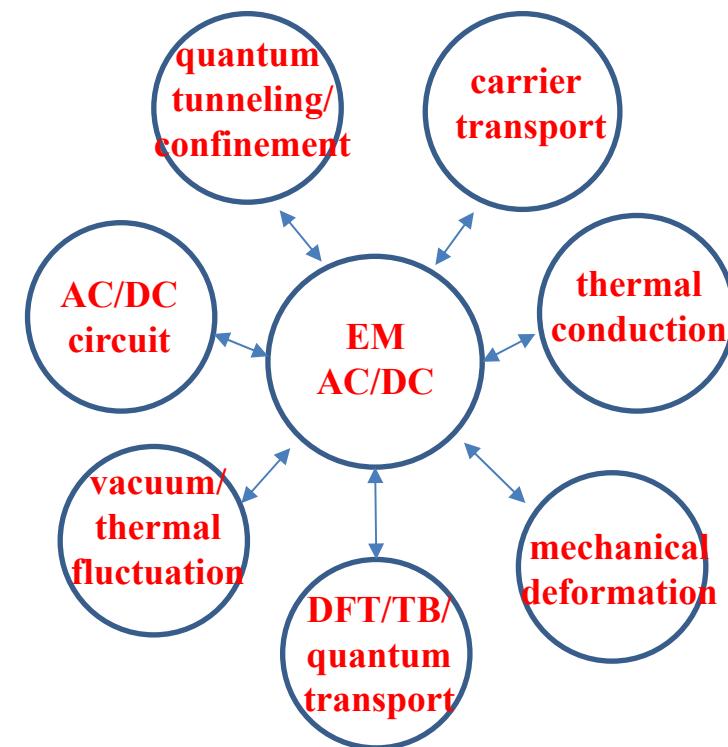
New Principle



quantum entanglement

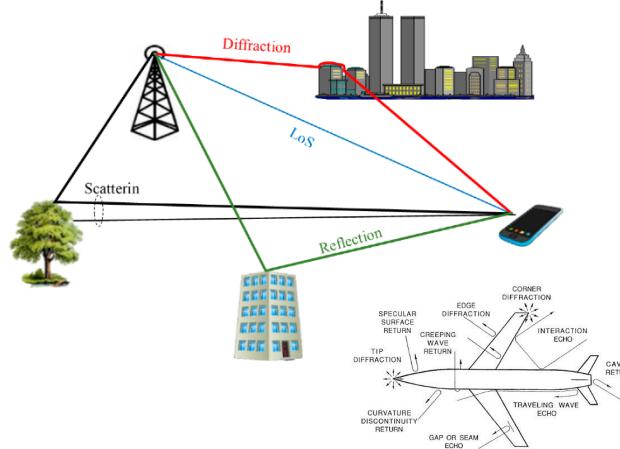
1. Background — EM-Multiphysics Simulation

EM compatibility/ interference (EMC/EMI)
signal integrity/ power integrity (SI/PI)
short-channel effects
quantum effects
field-circuit coupling
thermal-mechanical issue
electro-static discharge
parasitic effect
packaging
...



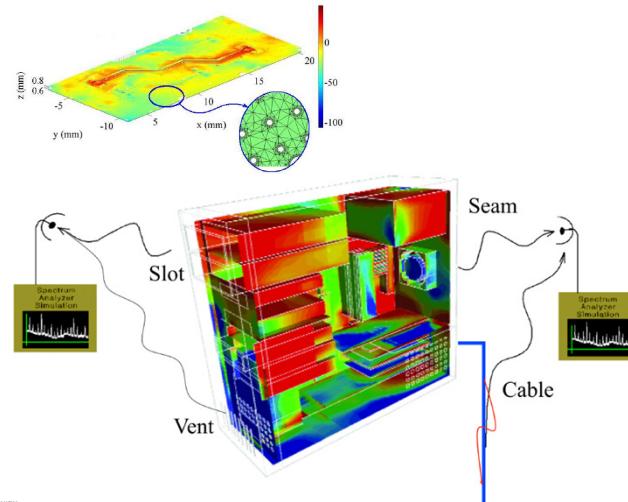
2. Analogy — Physical Behaviors of Photons

D: object size; λ : wavelength



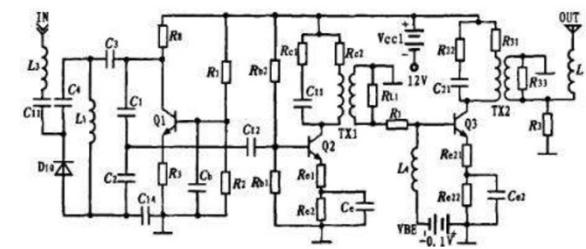
ray physics
 $D \gg \lambda$

Asymptotic solvers
PO/PTD/GO/GTD/UTD/
Ray tracing: Xpatch



wave physics
 $D \sim \lambda$

Full-wave solvers
FDTD: CST
FEM: ANSYS, COMSOL
MOM: FEKO, ADS

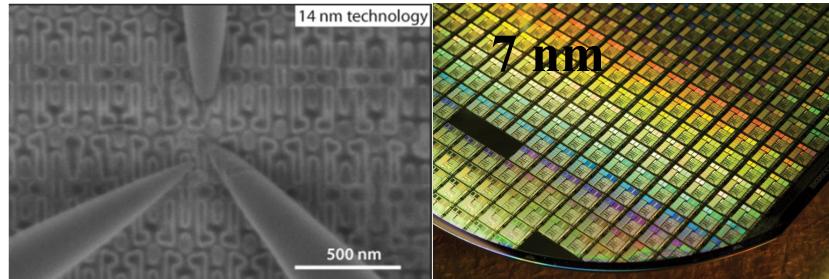


circuit physics
 $D \ll \lambda$

DC/AC circuit solvers
nodal equation:
SPICE, Multisim

2. Analogy — Physical Behaviors of Electrons

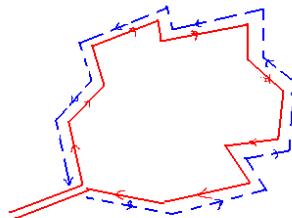
1. Ballistic transport limited by mean free path (coherent, $D < L_{e-e}$) : **EM wave propagating in homogeneous media** [ATK: NEGF + DFT]



↔ mesoscopic physics
quantum hydrodynamics

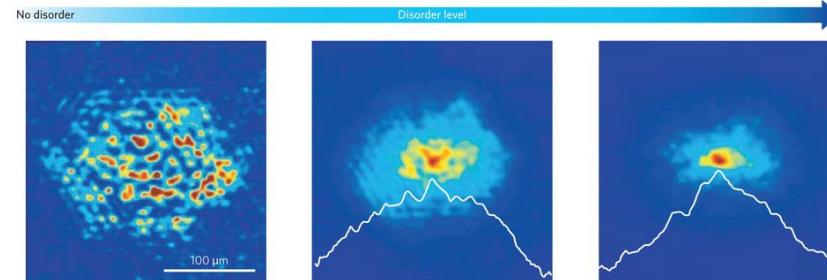
2. Diffusive transport limited by phase coherent length (back scattering enhancement, $D > L_{e-phonon}$) : **EM wave scattered by multiple scatterers** [Silvaco: Drift-Diffusion Model]
3. Anderson localization (metal-insulator transitions): **EM waves in random media**

time-reversal property



back scattering enhancement

disorder increase (diffusion → localization)



3. Governing Equations — From Classical to Quantum Worlds

	electron	photon
quantum	NEGF/ TB/ DFT equation	Quantized Maxwell equation
	Boltzmann equation	Vector-scalar potential equation
	Energy balance equation	Maxwell equation
	Hydrodynamic equation	Parabolic wave equation
classical	Drift-diffusion equation	Ray equation

Poisson's equation is unique, which is valid in both classical and quantum fields!

3. Governing Equations — Drift-Diffusion (DD) Equations Revisited

Level 1 (DD)

$$\begin{cases} \frac{\partial n}{\partial t} = \nabla \cdot \left(\mu_n n \mathbf{E}_n + \mu_n \frac{k_b T}{q} \nabla n \right) - (U - G) \\ \frac{\partial p}{\partial t} = -\nabla \cdot \left(\mu_p p \mathbf{E}_p - \mu_p \frac{k_b T}{q} \nabla p \right) - (U - G) \\ \nabla \cdot \varepsilon \nabla \psi = -q(p - n + N_D^+ - N_A^-) - \rho_s \end{cases}$$

Level 2 (Level 1 + heat conduction)

$$\begin{cases} \frac{\partial n}{\partial t} = \nabla \cdot \left(\mu_n n \mathbf{E}_n + \mu_n \frac{k_b T}{q} \nabla n + \mu_n \frac{k_b \nabla T}{q} n \right) - (U - G) \\ \frac{\partial p}{\partial t} = -\nabla \cdot \left(\mu_p p \mathbf{E}_p - \mu_p \frac{k_b T}{q} \nabla p - \mu_p \frac{k_b \nabla T}{q} p \right) - (U - G) \\ \nabla \cdot \varepsilon \nabla \psi = -q(p - n + N_D^+ - N_A^-) - \rho_s \\ \rho c_p \frac{\partial T}{\partial t} = \nabla \cdot \kappa \nabla T + \mathbf{J} \cdot \mathbf{E} + (E_g + 3k_b T) \cdot (U - G) \end{cases}$$

Level 3 (Level 2 + energy-balance)

$$\begin{cases} \mathbf{J}_n = q\mu_n n \mathbf{E}_n + k_b \mu_n (n \nabla T_n + T_n \nabla n) \\ \mathbf{J}_p = q\mu_p p \mathbf{E}_p - k_b \mu_p (p \nabla T_p + T_p \nabla p) \\ \frac{\partial(n\omega_n)}{\partial t} + \nabla \cdot \mathbf{S}_n = \mathbf{E}_n \cdot \mathbf{J}_n - (U - G) \cdot (E_g + \omega_n) - \frac{n(\omega_n - \omega_0)}{\tau_{\omega n}} \\ \frac{\partial(p\omega_p)}{\partial t} + \nabla \cdot \mathbf{S}_p = \mathbf{E}_p \cdot \mathbf{J}_p - (U - G) \cdot (E_g + \omega_p) - \frac{p(\omega_p - \omega_0)}{\tau_{\omega p}} \\ \mathbf{S}_n = -\kappa_n \nabla T_n - (\omega_n + k_b T_n) \frac{\mathbf{J}_n}{q} \quad \omega_c = \frac{3}{2} k_b T_c \\ \mathbf{S}_p = -\kappa_p \nabla T_p + (\omega_p + k_b T_p) \frac{\mathbf{J}_p}{q} \quad \omega_0 = \frac{3}{2} k_b T \\ \rho c_p \frac{\partial T}{\partial t} = \nabla \cdot \kappa \nabla T + (E_g + \omega_n + \omega_p) \cdot (U - G) + \frac{n(\omega_n - \omega_0)}{\tau_{\omega n}} + \frac{p(\omega_p - \omega_0)}{\tau_{\omega p}} \end{cases}$$

Level 1+ (quantum corrected DD)

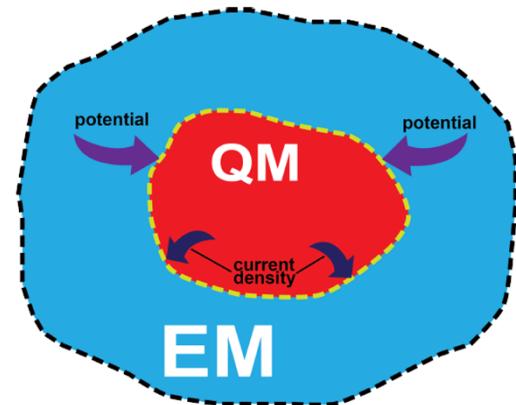
$$\begin{cases} \mathbf{E}_n = \frac{1}{q} \nabla E_c - \frac{k_b T}{q} \nabla \left(\ln(N_c) - \ln(T^{3/2}) \right) + \nabla \Lambda_n \\ \mathbf{E}_p = \frac{1}{q} \nabla E_v + \frac{k_b T}{q} \nabla \left(\ln(N_v) - \ln(T^{3/2}) \right) + \nabla \Lambda_p \\ \Lambda_n = -\frac{\hbar^2 \gamma_n}{6qm_n^*} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} \\ \Lambda_p = \frac{\hbar^2 \gamma_p}{6qm_p^*} \frac{\nabla^2 \sqrt{p}}{\sqrt{p}} \end{cases}$$

density-gradient

M. Lundstrom, Fundamentals of Carrier Transport, Cambridge University Press, 2000.

3. Governing Equations — Hybrid Solvers (1)

QM + EM + DD



Ohm's Law

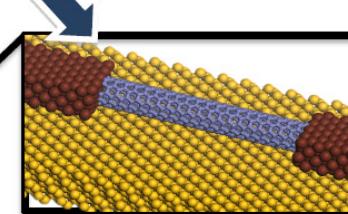
$$J = \sigma E$$
$$\nabla \cdot J + \frac{\partial \rho}{\partial t} = 0$$

Drift-diffusion Equation

$$\rho = q(p - n + N_D - N_A)$$
$$J_x = qu_x xE \pm kT\mu_x \nabla x, x \in \{n, p\}$$
$$\nabla J_x \pm q \frac{\partial x}{\partial t} - q(R - G) = 0$$

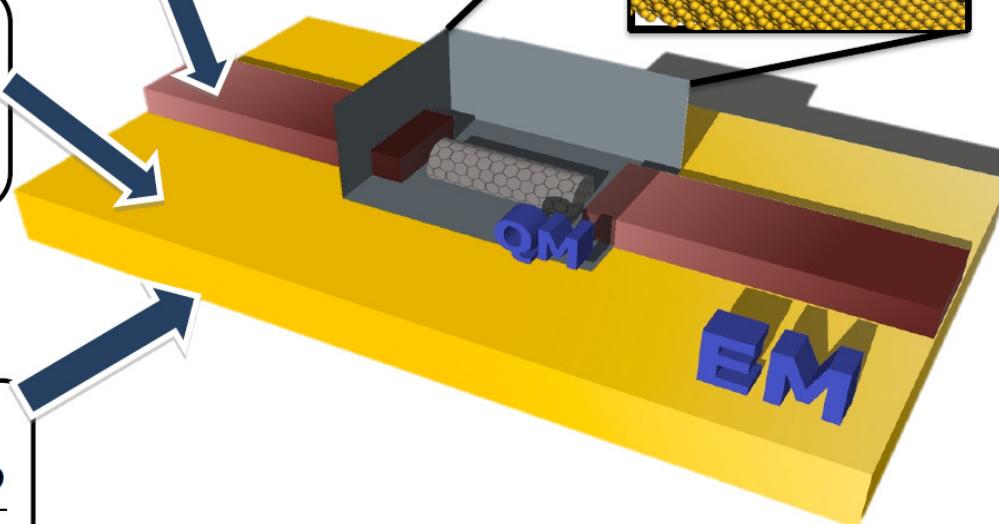
NEGF

$$\sigma = -\frac{i}{2\pi} \int dE G^<(E)$$
$$\nabla^2 V(r) = -4\pi\delta\rho(r)$$



Maxwell Equation

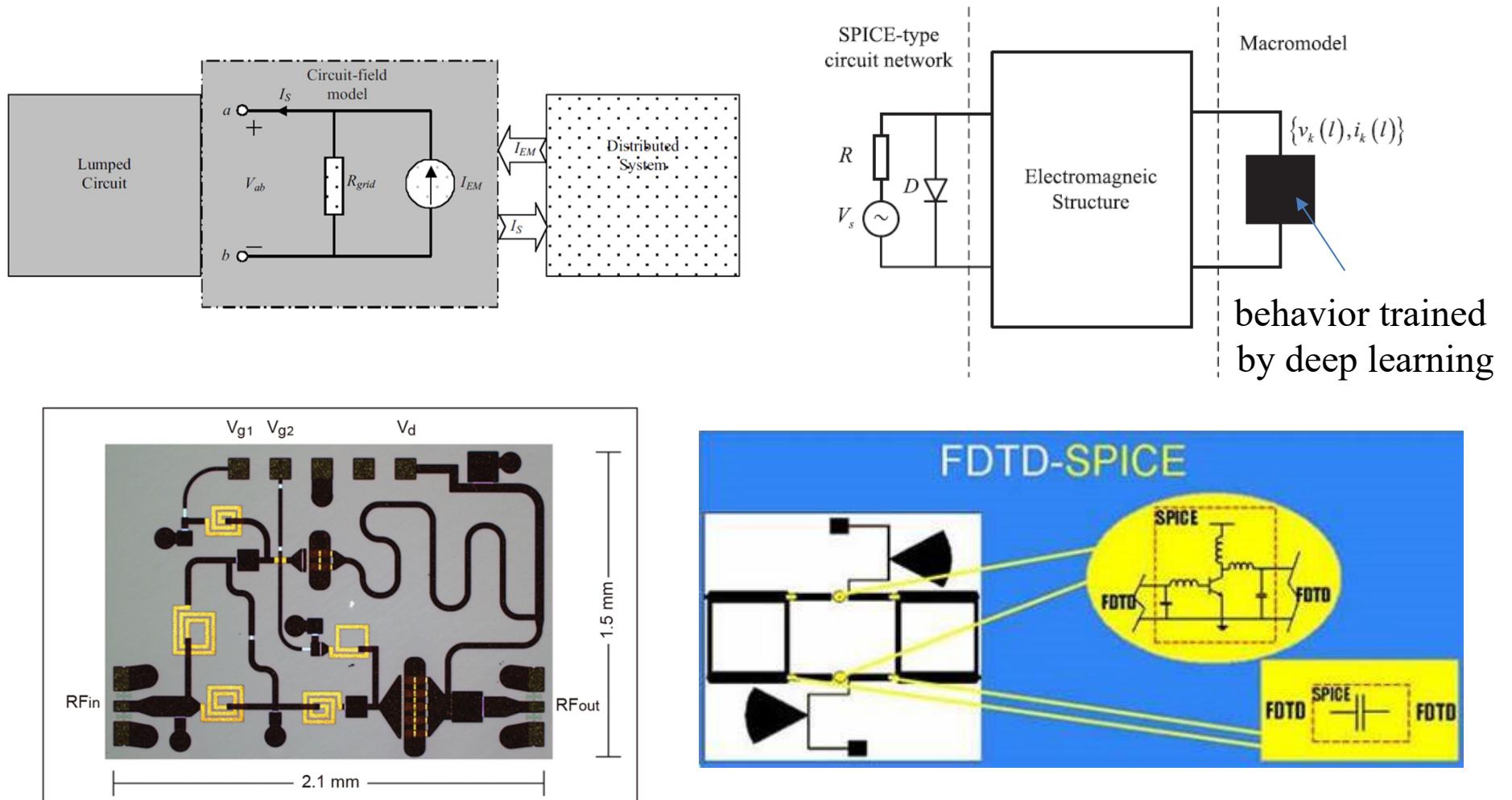
$$\nabla \cdot D = \rho, \nabla \cdot B = 0$$
$$\nabla \times E = -\frac{\partial B}{\partial t}, \nabla \times H = J + \frac{\partial D}{\partial t}$$



C. Y. Yam, et al. Chemical Society Reviews
44(7): 1763-1776, 2015

3. Governing Equations — Hybrid Solvers (2)

EM-Circuit Model



H. H. Zhang, et al. IEEE Transactions on Antennas and Propagation 64(7): 3233-3238, 2016
W. Sui, Time-Domain Computer Analysis of Nonlinear Hybrid Systems, CRC Press, 2002

3. Governing Equations — Hybrid Solvers (3)

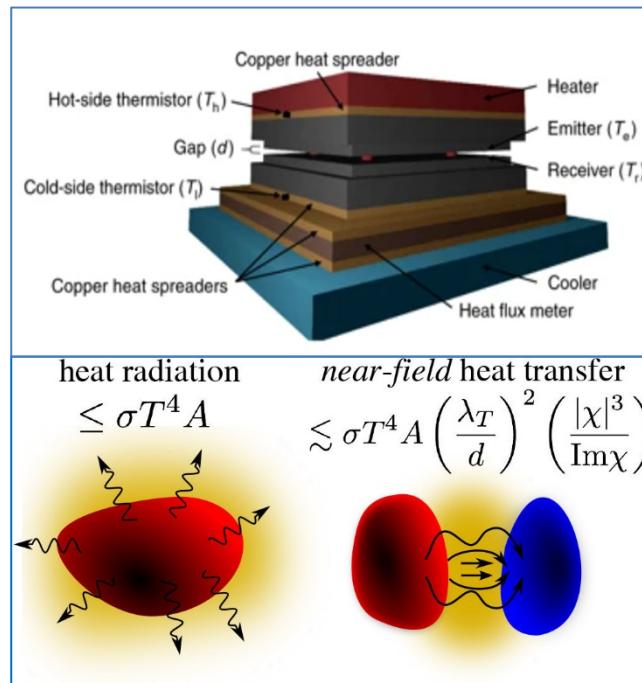
Classical EM + Quantum EM

W. E. I. Sha, IEEE Journal on Multiscale and Multiphysics Computational Techniques, 3: 198-213, 2018.

$$\langle 0 | \hat{\mathbf{E}}_S^+ (\mathbf{r}_0, \omega_{eg}) \hat{\mathbf{E}}_S^- (\mathbf{r}_0, \omega_{eg}) | 0 \rangle = \frac{\hbar \omega_{eg}^2}{\pi c^2 \epsilon_0} [\bar{n}(\omega_{eg}, T) + 1] \Im \overline{\mathbf{G}}(\mathbf{r}_0, \mathbf{r}_0, \omega_{eg})$$

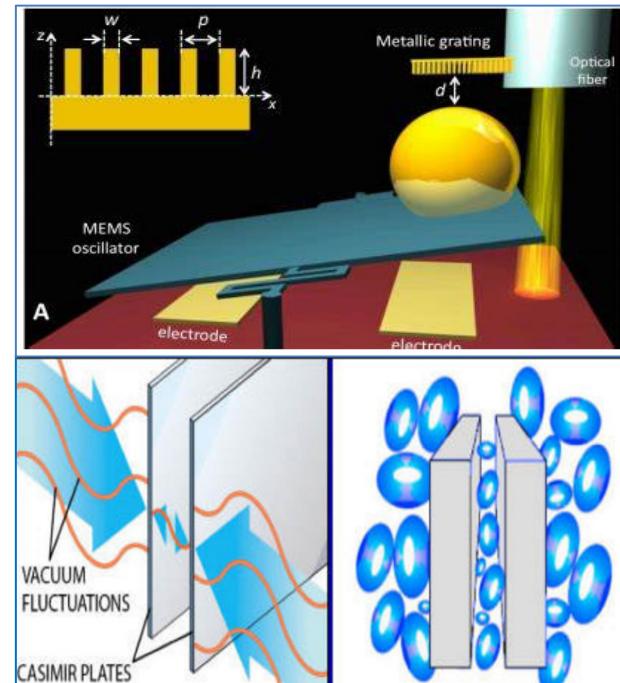
Fluctuation-dissipation theorem

thermal issue



J. DeSutter, et al. Nature Nanotechnology
14: 751-755, 2019

MEMS



F. Intravaia, et al. Nature Communications
4: 2515, 2013

3. Governing Equations — Remarks

1. Circuit solver is fastest; EM/DD solver is fast; QM solver is slow. Hybrid QM-EM-DD-Circuit solvers are recommended.
2. For Intel corporation, quantum simulation (DFT/ TB/ NEGF) costs 90% of computer resources to carry out 10% of task. DD simulation costs 10% of computer resources to carry out 90% of task.
3. DD model can be modified for modeling new materials based electronic devices (organic, perovskite, graphene, etc). Energy-balance equation may be good for short-channel effect (velocity overshoot, thermoelectric diffusion, and ballistic transport).
4. EM + Circuit + DD solvers are still mainstream multiphysics solvers for emerging electronics. But quantum corrections should be incorporated (density-gradient theory, field-temperature-channel length dependent mobility, etc).

4. Numerical Strategies — Coupling Schemes

1. Coupling by current (resulting from carrier transport or electric circuit)
2. Coupling by constitutive parameters (permittivity and permeability)
3. Coupling by geometries and boundaries

Maxwell's equations

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \leftrightarrow \nabla \times \tilde{\mathbf{E}} = -j\omega \tilde{\mathbf{B}}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \leftrightarrow \nabla \times \tilde{\mathbf{H}} = \tilde{\mathbf{J}} + j\omega \tilde{\mathbf{D}}$$

$$\nabla \cdot \mathbf{D} = \rho \leftrightarrow \nabla \cdot \tilde{\mathbf{D}} = \tilde{\rho}$$

$$\nabla \cdot \mathbf{B} = 0 \leftrightarrow \nabla \cdot \tilde{\mathbf{B}} = 0$$

Current continuity equation

$$\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0 \leftrightarrow \nabla \cdot \tilde{\mathbf{J}} + j\omega \tilde{\rho} = 0$$

4. Numerical Strategies — General Forms

Transient form

$$\begin{cases} \frac{\partial}{\partial t} u_1 = f_1(u_1, u_2, c_1(u_2)) \\ \frac{\partial}{\partial t} u_2 = f_2(u_2, u_1, c_2(u_1)) \end{cases}$$

Steady form

$$\begin{cases} f_1(u_1, u_2, c_1(u_2)) = 0 \\ f_2(u_2, u_1, c_2(u_1)) = 0 \end{cases}$$

physical fields: u_1, u_2 (scalar or vector)

physical parameters: c_1, c_2 (scalar or vector)

4. Numerical Strategies — Multiscale in Space

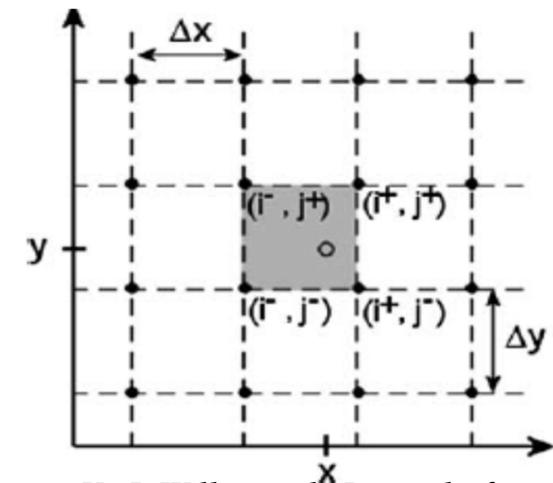
Discretization Rules

Electromagnetics (EM): dielectric wavelength or skin depth

Drift-diffusion (DD): Debye length

Quantum Mechanism (QM): electron wavelength

Circuit: No spatial grid



K. J. Willis, et al. Journal of Computational Electronics 8: 153, 2009

Strategies

1. Different spatial grid sizes are adopted for different systems. From coarse-to-fine grids, lifting or interpolation is used, and from fine-to-coarse grids restriction, integration or anterpolartion is used. Alternatively, the grids with basis functions of different orders are adopted.
2. Remove spatial grids in one system by the reduced eigenmode/eigenstate expansion technique (Computer Physics Communications, 215: 63-70, 2017).

Remarks

Stability issue and physical conservation (charge, flux, momentum, energy, etc)

4. Numerical Strategies — Multiscale in Time (1)

Discretization Rule

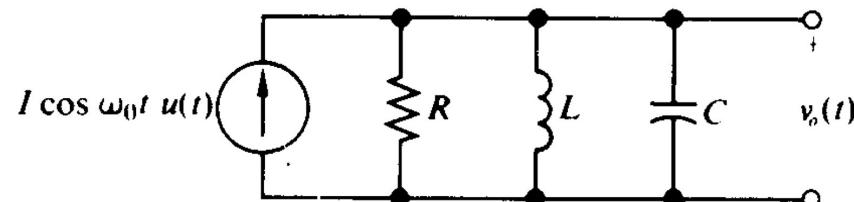
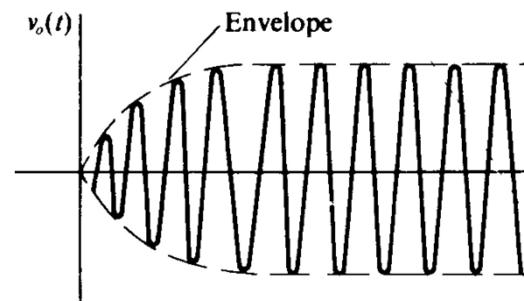
EM: propagation time or lifetime (for a photon)
depends on device sizes, group velocity, absorption coefficient, quality factor, etc.

DD: relaxation time (from non-equilibrium to equilibrium states)
depends on mean free path, coherence length, velocity of electron, etc.

QM: transition time (from an energy level to another) and decoherence time
depends on field intensity, dipole moment, EM environment, etc.

Circuit: RLC delay time (from transient to steady states)
depends on resistance, capacitance, and inductance.

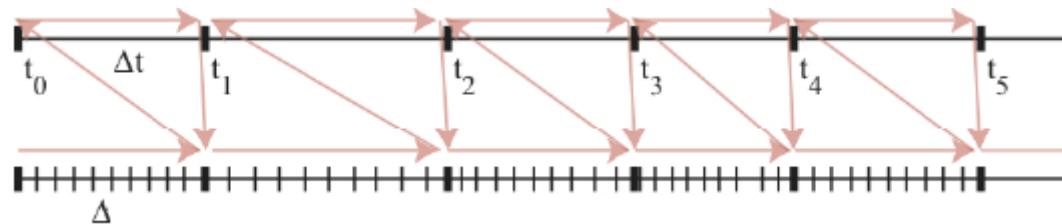
Timescale is important !



4. Numerical Strategies — Multiscale in Time (2)

Strategies

1. When one system/process has several times faster timescale relative to another, a simple strategy is to use an integer multiple of the faster timescale for the slow timescale.



2. Explicit scheme for fast timescale or linear/non-stiff problem and implicit for the slow timescale or nonlinear/stiff problem.

Explicit $u_1(t_{n+1}) = u_1(t_n) + \Delta_t f_1(u_1(t_n), u_2, c_1(u_2))$

Implicit $u_1(t_{n+1}) = u_1(t_n) + \Delta_t f_1(u_1(t_{n+1}), u_2, c_1(u_2))$

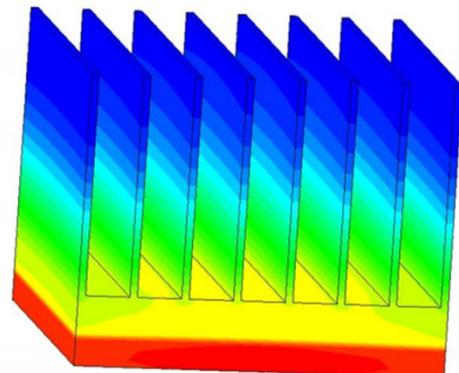
D. E. Keyes, et al. International Journal of High Performance Computing Applications 27(1): 4-83, 2013

4. Numerical Strategies — Multiscale in Time (3)

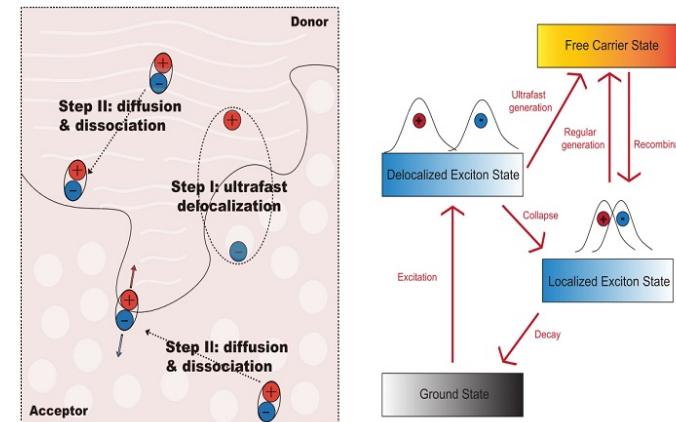
Strategies (Cont ...)

When one system/process has an extremely ($> 10^2 \sim 10^3$) faster timescale than the other processes, we can use the one-way non-self-consistent coupling or directly insert the faster physical quantity into the other PDE systems.

1. Electromagnetic-thermal problem (Maxwell & thermal-conduction equations)
propagation of electromagnetic pulse is much faster than diffusion of thermal flux.
2. Exciton delocalization and diffusion-dissociation problem in organic electronics
delocalization is ultrafast (\sim fs) and diffusion-dissociation is slow (\sim ps).



H. H. Zhang, et al. *Scientific Reports*
8: 2652, 2018



Z. S. Wang, et al. *Journal of Applied Physics*
120(21): 213101, 2016

4. Numerical Strategies — Numerical Methods (1)

Coupled evolution of a transient multiphysics problem

$$\begin{cases} \frac{\partial}{\partial t} u_1 = f_1(u_1, u_2, c_1(u_2)) \\ \frac{\partial}{\partial t} u_2 = f_2(u_2, u_1, c_2(u_1)) \end{cases}$$

explicit

$$\frac{u_1^{n+1} - u_1^n}{\Delta_t} = f_1(u_1^n, u_2^n, c_1(u_2^n))$$

$$\frac{u_2^{n+1} - u_2^n}{\Delta_t} = f_2(u_2^n, u_1^{n+1}, c_2(u_1^{n+1}))$$

No sparse matrix inversion
Stability is bad
Conditionally stable

semi-implicit

$$\frac{u_1^{n+1} - u_1^n}{\Delta_t} = f_1(u_1^{n+1}, u_2^n, c_1(u_2^n))$$

$$\frac{u_2^{n+1} - u_2^n}{\Delta_t} = f_2(u_2^{n+1}, u_1^{n+1}, c_2(u_1^{n+1}))$$

Sparse matrix inversion
Stability is better
Conditionally stable

implicit

$$\frac{u_1^{n+1} - u_1^n}{\Delta_t} = f_1(u_1^{n+1}, u_2^{n+1}, c_1(u_2^{n+1}))$$

$$\frac{u_2^{n+1} - u_2^n}{\Delta_t} = f_2(u_2^{n+1}, u_1^{n+1}, c_2(u_1^{n+1}))$$

Newton's method in each step
Stability is best
Unconditionally stable

4. Numerical Strategies — Numerical Methods (2)

Equilibrium of a multiphysics problem (the coupling concepts are also applicable to the transient problems)

$$\begin{cases} f_1(u_1, u_2, c_1(u_2)) = 0 \\ f_2(u_2, u_1, c_2(u_1)) = 0 \end{cases} \rightarrow \mathbf{F}(\mathbf{u}, c(\mathbf{u})) = 0$$

strong coupling

Newton's method

$$\mathbf{u}^{k+1} = \mathbf{u}^k - J^{-1}(\mathbf{u}^k) \mathbf{F}(\mathbf{u}^k)$$

$$J = \frac{\partial \mathbf{F}}{\partial \mathbf{u}} = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} \end{bmatrix}$$

DD equations

weak coupling

self-consistent solution

$$\begin{array}{c} f_1(u_1^{k+1}, u_2^k, c_1(u_2^k)) = 0 \\ \downarrow \quad \uparrow \\ f_2(u_2^{k+1}, u_1^{k+1}, c_2(u_1^{k+1})) = 0 \end{array}$$

EM-QM
EM-circuit

one-way coupling

sequential solution

$$\begin{cases} f_1(u_1) = 0 \\ f_2(u_2, u_1, c_2(u_1)) = 0 \end{cases}$$

EM-thermal
organic electronics

5. Conclusion

EM-Multiphysics simulation for emerging electronics is a very challenging field. There is no universal panacea.

1. We have to understand electronics problem with a critical/deep physical insight.
2. We have to figure out the coupling strategies and numerical solutions.
3. We have to know the pros and cons of various numerical algorithms.
4. We have to identify the physical bounds of a multiphysics model.
5. We have to learn as much as possible to take a new look at governing equations.
6. We have to collaborate with mathematicians, physicists, chemists, engineers, etc.
7. We have to train our students for working in the multidisciplinary fields.

EM-Multiphysics Education in Engineering College

Knowledge Grows Like a Tree

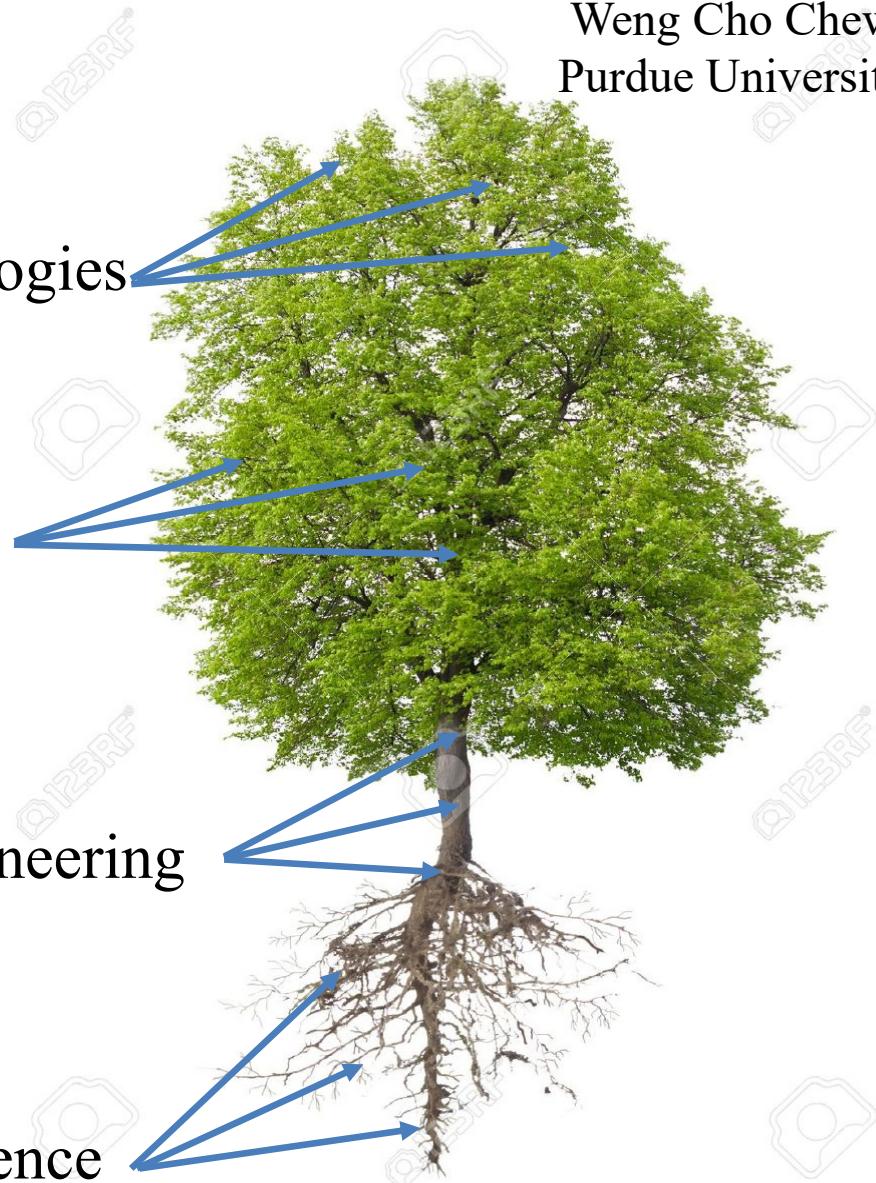
Weng Cho Chew
Purdue University

Real-World Applications and Technologies

Application-Based Engineering

Science-Based Engineering

Mathematics, Physics, Science



Acknowledgement

Thanks for your attention !

“Scientists investigate that which already is;
Engineers create that which has never been.”
—— Albert Einstein

