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Abstract: The PT-symmetric waveguides have been frequently discussed in the photonics
community due to their extraordinary properties. Especially, the study of power transmission
is significant for switching applications. The aim of this study is to extract the mode power
transmission parameters based on the coupled mode equations and analyze the power properties
of the PT-symmetric system. The equations relying on the coupled mode theory are constructed
according to the two different orthogonality relations between the original and adjoint system. The
results matching well with the finite difference simulations demonstrate the validity of our method,
while the conventional coupled mode theory fails. The power properties in the PT-symmetric
and PT-broken phases are also observed. Furthermore, a new integration is implemented from
which the conserved quantity is defined and extracted, which reflects the Hamiltonian invariant
of the system. Our method fully incorporates the properties of complex modes and allows the
study of the power transmission properties based on the orthogonality relations, which is also
applicable to other types of non-Hermitian optical systems. This work provides what we believe
to be a new perspective for the power analysis of PT-symmetric waveguides and is helpful to
design the switching devices.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The coupled mode theory (CMT) [1] is a well-established tool of analyzing and designing
waveguides, which can be employed to calculate the propagation constant, eigen-frequencies
and transmission properties of different waveguide structures. It describes the orthogonality
relation of regular waveguide modes and the interactions between different modes of irregular
waveguides, which is a productive approach to model the parametric nonlinear devices such
as waveguide structures, optical fiber networks, photonic crystal waveguide and various other
optoelectronic structures [2–7]. The conventional CMT (CCMT) has been further developed
by many authors [8–12] and enriched by the non-orthogonal coupled mode theory (NCMT)
[11–18]. In recent years, the parity-time (PT) symmetry of photonic structures has been a
subject of intensive investigation [19–30]. The quantities of power propagation in individual
channel waveguides are of critical importance for switching applications, especially in presence
of loss and gain [31,32]. The construction of coupled mode equation relying on the CMT is an
indispensable tool for extracting the power transmission. For the lossless system, the CCMT
constructs the mode equations of the the Hermitian system with conserved quantity according
to the complex conjugate inner-product of the reciprocity theorem, while for the PT-symmetric
optical structures of the non-Hermitian system, the traditional conjugate inner-product fails.
Regarding this lossy issue, the NCMT proposed by Hardy [15] encompasses refractive index
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perturbations not included within the waveguides. The Lagrangian treatment developed in
Ref. [20] is used for the problems with real propagation constants of the dual PT-symmetric
structures. Nevertheless, the general CMT proposed by the [33] effectively solves the dispersion
relation through the introduction of the adjoint system. It helps to design new optical devices
and study the power transmission properties of more complicated structures. Moreover, the
PT-symmetric structures of the non-Hermitian system exhibit intriguing optical phenomena, e.g.,
a real-to-complex spectral phase transition [34] from the PT-symmetric phase to the broken
phase, it is worthwhile to analyze the corresponding power properties and the orthogonality
relations of the system mode.

In this work, we derive two kinds of coupled mode equations for the PT-symmetric waveguides
based on the different mode orthogonality relations between the original and the adjoint systems
[35]. The [33] considers the adjoint fields under the chiral symmetry system and uses the
perturbation method to establish the inner-product equation. On this basis, we additionally
discuss the conjugate case and analyze the mode power transmission properties of the individual
waveguide under the weak coupling conditions. Numerically, we employ the 3D finite-difference
frequency-domain (FDFD) method [36–38] to simulate the PT-symmetric waveguides and
compare the results of lossy and gain mode powers calculated by the CMT and the FDFD
method, which show excellent agreement. Interestingly, before and after the phase transition,
the mode power exhibits different transmission properties and non-conserved behaviors, which
are attributed to the dispersion properties and the non-Hermitian Hamiltonians of the system
[39]. Also, the orthogonality of the system mode powers has altered accordingly. Despite the
non-Hermitian nature of the Hamiltonian, the symmetry refers to invariance under parity (P) and
time reversal (T) operations reflecting the Hamiltonian invariant of the system, which allows the
system to exhibit other conserved quantities. We demonstrate that the new integration between
the supermodes and the total fields results in a conserved quantity Q within the real spectrum.
The symmetric periodic oscillatory curves of “lossy" and “gain" mode quantities of Q can be
extracted based on the composite operations of supermodes. Finally, we find that the conserved
quantity exists only in this PT-symmetric system, which does not manifest in other lossy systems.
Our work may contribute to the study of mode power transmissions in more complicated systems.
Also, it provides a new perspective on studying and extracting the conserved quantity of the
PT-symmetric systems.

The remainder of the paper is organized as follows. In Section 2, we derive the reciprocity
theorem and get two different mode orthogonality relations of the complex mode fields between
the different systems. The corresponding coupled mode equations are then constructed. In
Section 3, we study the mode dispersion of the PT-symmetric waveguides. The transmission
parameters of the lossless and the PT-symmetric waveguides are compared with the theoretical
results, also with those from the CCMT. Moreover, the conserved quantities are defined and
calculated. In Section 4, we summarize the paper.

2. Basic theory

2.1. Symmetry properties of operators and reciprocity theorem

In general, a linear operator can be written symbolically as Gf ⟩ = h⟩, and the inner product
between two vectors f (x) and g(x) over the domain a<x<b can be defined as ⟨f , g⟩ =

∫ b
a dxf (x)g(x).

For the scalar inner-product, the transpose of the operator G, denoted as GT , is an operator
such that ⟨f , Gg⟩ =

⟨︁
g, GT f

⟩︁
. Hence, the operator G is symmetric if ⟨f , Gg⟩ = ⟨g, Gf ⟩, i.e.,

G = GT . As for the complex inner-product, the adjoint of the operator G, denoted as Ga, is
an operator such that ⟨f ∗, Gg⟩ = ⟨g∗, Gaf ⟩∗, and if the operator G is self-adjoint or Hermitian,
⟨f ∗, Gg⟩ = ⟨g∗, Gf ⟩∗, i.e., G = Ga [40].
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First, we derive the time-harmonic wave equation for the electric field. Suppose that the current
source J radiates in an anisotropic, inhomogeneous medium, then the scattered time-harmonic
fields denoted as E(r, t) = E(r)eiωt, H(r, t) = H(r)eiωt satisfy the Maxwell equations

∇ × E(r) = −iωµ0 µ̄rH(r), (1)

∇ × H(r) = J + iωε0ε̄rE(r), (2)

where the permittivity and permeability in free space are ε0 and µ0, and the relative values of
these two terms in the medium are ε̄r and µ̄r. ∇× Eq. (1) and substitute the result into Eq. (2),
we get

∇ × µ̄r
−1 · ∇ × E(r) − ω2ε̄rE(r) = −iωJ. (3)

If there are two groups of sources J1 and J2 produce the fields E1 and E2, then the vector wave
equations are shown as follows, respectively

∇ × µ̄−1 · ∇ × E1 − ω
2ε̄E1 = −iωJ1, (4)

∇ × µ̄−1 · ∇ × E2 − ω
2ε̄E2 = −iωJ2. (5)

Taking the inner product of the Eq. (4) by E2 and the Eq. (5) by E1, we obtain

−iω ⟨E2, J1⟩ =
⟨︁
E2,∇ × µ̄−1 · ∇ × E1

⟩︁
− ω2 ⟨E2, ε̄E1⟩ , (6)

−iω ⟨E1, J2⟩ =
⟨︁
E1,∇ × µ̄−1 · ∇ × E2

⟩︁
− ω2 ⟨E1, ε̄E2⟩ . (7)

when µ̄ and ε̄ are symmetric tensors, it can be derived that "∇ × µ̄−1 · ∇×" is also a symmetric
operator, i.e., the right hand sides of Eqs. (6) and (7) are symmetric about E1 and E2. Hence,
the reciprocal theorem holds ⟨E2, J1⟩ = ⟨E1, J2⟩. Obviously, the symmetry properties of the
operators (i.e., transpose symmetric) are the necessary conditions to the reciprocal relation of
system.

2.2. Orthogonality relation of waveguide modes

For the waveguide that is invariant along the z direction, we consider an electromagnetic wave
having angular frequency ω and propagating in the z direction with propagation constant β,
where the electric and magnetic fields can be expressed as follows:

E(r, t) = [et(x, y) + zez(x, y)] exp(iωt − iβz), (8)

H(r, t) = [ht(x, y) + zhz(x, y)] exp(iωt − iβz). (9)

Substituting the Eqs. (8) and (9) into the Maxwell’s equations, the equations of transverse
electric and magnetic fields could be written as

∇2
t et + ∇t

(︃
et ·

∇tn2

n2

)︃
+ k2

0n2et = β
2et, (10)

∇2
t ht +

1
n2 ∇tn2 × (∇t × ht) + k2

0n2ht = β
2ht, (11)

where n is the refractive index of the material, and k0 is the wave number in free space,
et = xex + yey, ht = xhx + yhy. They could also be expressed in the matrix form of operators like:

pxxex + pxyey = β
2ex, (12)

pyxex + pyyey = β
2ey, (13)
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qxxhx + qxyhy = β
2hx, (14)

qyxhx + qyyhy = β
2hy. (15)

The operators are expanded as follows:

pxxex =
∂

∂x

(︄
1
n2

1

∂
(︁
n2

1ex
)︁

∂x

)︄
+
∂2ex

∂y2 + k2
0n2

1ex, pxyey =
∂

∂x

(︄
1
n2

1

∂n2
1

∂y
ey

)︄
, (16)

pyyey =
∂

∂y

(︄
1
n2

1

∂
(︁
n2

1ey
)︁

∂y

)︄
+
∂2ey

∂x2 + k2
0n2

1ey, pyxex =
∂

∂y

(︄
1
n2

1

∂n2
1

∂x
ex

)︄
, (17)

qxxhx =
∂2

∂x2 hx + n2
2
∂

∂y

(︄
1
n2

2

∂

∂y
hx

)︄
+ k2n2

2hx, qxyhy = −n2
2
∂

∂y

(︄
1
n2

2

∂

∂x
hy

)︄
+

∂2

∂y∂x
hy, (18)

qyyhy =
∂2

∂y2 hy + n2
2 ∂

∂x

(︃
1

n22
∂

∂x
hy

)︃
+ k2

0n2
2hy, qyxhx = −n2

2
∂

∂x

(︄
1
n2

2

∂

∂y
hx

)︄
+

∂2

∂x∂y
hx. (19)

Considering the guided mode electric field under n1 = nr + iκ and the guided mode magnetic
field under the same system n2 = nr + iκ, nr is the real part of the refractive index, which describes
the phase velocity of light in the material, and κ is the extinction coefficient, which quantifies
the loss of wave amplitude as it propagates through the medium due to absorption or scattering.
According to the integration by parts, one obtains

⟨φ1, pxxφ2⟩ =
⟨︁
pT

xxφ1, φ2
⟩︁
=

⟨︁
qyyφ1, φ2

⟩︁
, (20)

where φ refers to the scalar electric and magnetic field in the expanded equations. Therefore, we
could derive that pT

xx = qyy, pT
yy = qxx, pT

xy = −qxy, pT
yx = −qyx. Multiplying

⟨︁
hy2 , ⟨hx2 ,

⟨︁
ey1 , ⟨ex1

by Eq. (12), (13), (14), (15), respectively, and subtracting one from the other yields the following
equations: ⟨︁

ey1, pT
xyhy2

⟩︁
−

⟨︁
ex1, qyxhx2

⟩︁
=

(︂
β2

2 − β2
1

)︂ ⟨︁
ex1, hy2

⟩︁
, (21)⟨︁

ex1, pT
yxhx2

⟩︁
−

⟨︁
ey1, qxyhy2

⟩︁
=

(︂
β2

2 − β2
1

)︂ ⟨︁
ey1, hx2

⟩︁
. (22)

Subtracting Eq. (22) from Eq. (21), we obtain
(︁
β2

2 − β1
2)︁ (︁⟨︁

ex1, hy2
⟩︁
−

⟨︁
ey1, hx2

⟩︁)︁
= 0. Thus,

for β2
1 ≠ β

2
2 , we obtain the orthogonality relation∬

A
ej × hk · zdA = 2Cδjk, (23)

where A represents the cross-section that includes the waveguide and its vicinity at z =
const, C is a normalization parameter, and j and k refer to the different orders of modes
in the same system. As for its conjugate system n2 = nr − iκ, we can also get pa

xx = qyy,
pa

yy = qxx, pa
xy = −qxy, pa

yx = −qyx. The equation for conjugate integration could be written as(︂
β2

2 −
(︁
β1

2)︁∗)︂ (︂⟨︂
e∗x1, hy2

⟩︂
−

⟨︂
e∗y1, hx2

⟩︂)︂
= 0. In this case, the following conjugate orthogonality

relation is satisfied for
(︁
β2

1
)︁∗
≠ β2

2 ∬
A

e∗j × hk · zdA = 2Cδjk, (24)

where j and k refer to the different orders of modes in the two conjugate systems. This relationship
also implies the power orthogonality. The equation (23) indicates that the loss or gain break
the conjugate power orthogonality [41], not only for PT-symmetric but also for arbitrary non-
Hermitian systems. Remarkably, the power orthogonality may lost in the broken phase of the
PT-symmetric waveguides. We will discuss this issue later on.
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2.3. Coupled mode equations for the PT-symmetric waveguides

In this work, we focus on the mode power transmission properties of the PT-symmetric waveguides
with the schematic shown in Fig. 1.

Fig. 1. The schematic of PT-symmetric waveguides: Loss (n1 = nr − iκ) and Gain
(n2 = nr + iκ) with the width w, height h, and the spacing distance d, embedded in the
cladding medium.

Next, we will derive the coupled mode equation based on the two orthogonality relations in
the last section. The fields propagating in the +z and −z direction are denoted as ϕ = {ϕt, ϕz}

= {(e+x , e+y ), e+z , (h+x , h+y ), h+z }, ψ = {ψt,ψz} = {(e−x , e−y ), e−z , (h−x , h−y ), h−z }. Substituting the Eq. (8)
and (9) of mode field expressions, the Maxwell equations could be written as:

∇t × e+z − iβz × e+t = −iωµ+h+t , (25)

∇t × h+z − iβz × h+t = iωε+e+t , (26)

∇t × e−z + iβz × e−t = −iωµ−h−
t , (27)

∇t × h−
z + iβz × h−

t = iωε−e−t , (28)

where ε = ε0εr={εt, εz}, µ = µ0µr={µt, µz}. The matrix forms of the equations (25)(26),
(27)(28) are expressed as G+ϕ = 0 and G−ψ = 0, respectively. For the chiral symmetric
materials, ε−t = ε+t , ε−z = −ε+z , while considering the conjugate case, ε−t = (ε+t )

∗, ε−z =
−(ε+z )

∗, where ∗ indicates the operation of complex conjugation. Accordingly, it can be
derived that e−, h− are related to e+, h+ by e− = {e+x , e+y ,−e+z }, h− = {−h+x ,−h+y , h+z } or e′−
= {(e+x )∗, (e+y )∗,−(e+z )∗}, h′− = {−(h+x )∗,−(h+y )∗, (h+z )∗}. In order to establish the inner-product
equation, the guided mode fields of the adjoint system are chosen as the test functions. Depending
on the reciprocal and orthogonality relations discussed above, the different inner-product equations
satisfy (ψt, G+ϕt) = (G−ψt, ϕt) or (ψ′∗

t , G+ϕt) = ((G−
aψt)

′∗, ϕt), G−
a is the operator matrix in the

conjugate case. Therefore we can expand them into the coupled mode equations. Firstly,
we consider the weak coupling conditions and approximate the transverse total fields as the
summation of the lossy guided mode fields {e+1t, h

+
1t} and the gain guided mode fields {e+2t, h

+
2t},

E+t (r) = a+1 (z)e
+
1t + a+2 (z)e

−
2t, H

+
t (r) = a+1 (z)h

+
1t + a+2 (z)h

+
2t, the equations are as follows,

∇t ×
(︁
e+t1 + e+t2

)︁
+

da1
dz

z × e+t1 +
da2
dz

z × e+t2 = −iωµ
(︁
h+t1 + h+t2

)︁
, (29)

∇t ×
(︁
h+t1 + h+t2

)︁
+

da1
dz

z × h+t1 +
da2
dz

z × h+t2 = iωε
(︁
e+t1 + e+t2

)︁
. (30)

The fields of adjoint system within the single waveguide satisfy

∇t × e−z1 + iβ1z × e−t1 = −iωµ−1 h−
t1, (31)

∇t × h−
z1 + iβ1z × h−

t1 = iωε−1 e−t1. (32)
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Following the non-conjugate inner-product equations and the conjugate inner-product equations,
we can get

F = e−t1 · Eq.(30) − (e+t1 + e+t2) · Eq.(32) + h−
t1 · Eq.(29) − (h+t1 + h+t2) · Eq.(31), (33)

F′ = (e′t1
−
)∗ · Eq.(30) − (e+t1 + e+t2) · Eq′.(32) + (h′

t1
−
)∗ · Eq.(29) − (h+t1 + h+t2) · Eq′.(31). (34)

Integrate over the cross-section, the coupled mode equation could be expressed uniformly as

da+1
dz
+ c12

(︃da+2
dz
+ iβ2a+2

)︃
= −iβ1a+1 + ia+1 k11 + ia+2 k12. (35)

Replacing the fields of Eqs. (31)(32) and taking the dot-product of Eqs. (29)(30) with e−t2, h−
t2,

the other equation could also be obtained

da+2
dz
+ c21

(︃da+1
dz
+ iβ1a+1

)︃
= −iβ2a+2 + ia+2 k22 + ia+1 k21, (36)

where kpq =
ωε0

∬
Sd
(εr−1)e−pt ·e+qtdxdy∬ ∞

−∞

(︂
h+pt×e−pt+e+pt×h−

pt

)︂
dxdy

, cpq = −

∬
Sd

(︂
h−

pt×e+qt+e−pt×h+qt

)︂
dxdy∬ ∞

−∞

(︂
h+pt×e−pt+e+pt×h−

pt

)︂
dxdy

are from the F; k′pq =

ωε0
∬

Sd
(εr−1)(e′−pt )

∗ ·e+qtdxdy∬ ∞

−∞

(︂
h+pt×(e

′−
pt )

∗+e+pt×(h
′−
pt )

∗

)︂
dxdy

, c′pq = −

∬
Sd

(︂
(h′−

pt )
∗×e+qt+(e

′−
pt )

∗×h+qt

)︂
dxdy∬ ∞

−∞

(︂
h+pt×(e

′−
pt )

∗+e+pt×(h
′−
pt )

∗

)︂
dxdy

are from the F′; p = 1 or 2, q

= 1 or 2; "d" denotes the perturbed region, the gain waveguide is regarded as the result of a
perturbation to the cladding layer of the lossy waveguide, and vice versa. Thus for the Eqs. (35)
and (36), the integration regions are the core section S2, S1 of the gain waveguide and the lossy
waveguide, respectively. Notably, the value of cpq reflects the influence exerted by the rate of
change and phase shift of mode q on mode p, which represents a higher-order correction in
the coupling dynamics. Compared to the direct coupling kpq, the magnitude of this additional
influence is negligible, and the actual calculated values of our examples confirm that.

For comparison, we derive the coupled mode equations based on the CCMT [12], the inner-
product equation is (ψ∗

t , G+ϕt) = ((G−ψt)
∗, ϕt) or (ψ ′

t , G+ϕt) = (G−
aψ

′
t , ϕt). Similarly, we can

get:

da+1
dz
+ c12

(︃da+2
dz
+ iβ2a+2

)︃
= −iβ∗1a+1 + ia+1 k11 + ia+2 k12, (37)

da+2
dz
+ c21

(︃da+1
dz
+ iβ1a+1

)︃
= −iβ∗2a+2 + ia+2 k22 + ia+1 k21, (38)

where kpq =
ωε0

∬
Sd
(εr−1)(e−pt)

∗ ·e+qtdxdy∬ ∞

−∞

(︂
h+pt×(e−pt)

∗+e+pt×(h−
pt)

∗

)︂
dxdy

, cpq = −

∬
Sd

(︂
(h−

pt)
∗×e+qt+(e−pt)

∗×h+qt

)︂
dxdy∬ ∞

−∞

(︂
h+pt×(e−pt)

∗+e+pt×(h−
pt)

∗

)︂
dxdy

are from the F, F′

follows a similar procedure. The results in the next section will show that the CCMT fails to
capture the mode power transmission properties of the PT-symmetric waveguide.

The coupled mode equations provide the analytic references for the mode power transmissions
of the PT-symmetric waveguide and it can be further applied to the other directional couplers.
Regarding to the numerical or measurement results, in order to separate the contribution of the
guided mode from any other radiative scattering, the particular guided mode field Em and Hm
are computed first. Then the power Pm carried in E and H by the mode from the conventional
method is given by

Pm =

|︁|︁|︁|︁14 ∬
A

(︁
E∗

m × H + E × H∗
m
)︁
· dA

|︁|︁|︁|︁2 , (39)

based on the well-known orthogonality properties of the modes at a fixed frequency [42–44].
This study concentrates on the calculation of power transmission of complex mode field Elm and
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Egm in the lossy/gain waveguides, where the power of lossy mode Plm is calculated by

Plm =

|︁|︁|︁|︁14 ∬
A
(Elm × H + E × Hlm) · dA

|︁|︁|︁|︁2 , (40)

based on the non-conjugate orthogonality relation as discussed above. This equation, correspond-
ing to the conjugate orthogonality relation, can also be written in the form of the conjugate mode
as follows:

Plm =

|︁|︁|︁|︁14 ∬
A

(︂
E∗

gm × H + E × H∗
gm

)︂
· dA

|︁|︁|︁|︁2 . (41)

In combination with the above two differential Eqs. (35) and (36), one variable can be
eliminated such that

d2a1

dz2 + i (γ1 + γ2)
da1
dz
+ (k12k21 − γ1γ2) a1 = 0, (42)

where γ1 = k11 + β1, γ2 = k22 + β2. The eigenvalues of the exponential term are

λ± =
1
2

i (γ1 + γ2) ∓
i
2

√︂
(γ1 − γ2)

2 + 4k12k21. (43)

When varying two of the available parameters, the two eigenvalues can be forced to coalesce at a
specific point called the "exceptional point" (EP) [45,46] where (γ1 − γ2)

2 + 4k12k21 = 0. The
system exhibits two phases: PT-symmetry phase and PT-broken phase. The system undergoes
a transition from a completely real spectrum into a complex spectrum, which is known as
PT-symmetry breaking [47–49]. Moreover, the breaking of PT symmetry is not only limited to
gain-loss systems but can also occur in other types of systems [50,51]. Next, we will discuss the
mode power transmission and phase transition properties of the PT-symmetric waveguides in
detail, as well as the conserved quantity for the Hamiltonian invariant of the system.

3. Results and discussions

3.1. Eigenmodes of PT-symmetric waveguides

In this part, we use the FDFD method to study the dispersion relations of the coupled waveguides
with balanced loss and gain [52]. In comparison to the time-domain methods encountering
divergence issues, this method demonstrates strong stability for solving complex modes and
the ability to handle complex boundary conditions in non-Hermitian systems. Additionally, the
FDFD method enables the direct calculation of the transmission parameters, facilitating the
analysis of mode interactions and the coupling strengths, which is well-suited for solving the
multimode problems and evaluating the contrast transmission behaviors before and after phase
transition for the PT-symmetric waveguide. The following material and geometrical parameters
corresponding to the general silicon-based optical waveguide devices are chosen: nr = 3.48,
w = 0.45 µm, h = 0.225 µm, d = 0.09 µm; the working wavelength is λ = 1.55 µm and k is
the independent variable. The schematic is shown in the inset of Fig. 2(a). It is known that
a pair of even and odd supermodes emerge in this instance. Numerically calculated real and
imaginary parts of the effective refractive index (neff ) of both two eigenmodes as a function of k
are shown in Figs. 2(a), (b), respectively. They match results from COMSOL remarkably well,
which demonstrates the accuracy of the algorithm and the results. As discussed in Section 2.3,
the EP is a single point, and the corresponding k value of this structure at this point is around
0.018. Below this critical value, the guided modes propagate with real neff , while beyond the EP,
the imaginary part of the neff splits into two branches. Transversal distributions of the eigenmode
fields for the different values of k below and above the EP, are plotted in Figs. 2(c)(d), (e)(f). It
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is obvious that phase transition occurs in the fields at the EP. The mode confinement and the
propagation constant exhibit a substantial difference before and after the phase transition of the
PT-symmetric system. The whole system is under the PT-symmetric and broken phase states,
respectively. For exploring the issue of the mode power transmission, it is worthwhile to analyze
the mode orthogonality of the system. The power flows between different modes are calculated
by the Eq. (23) under the different k = 0.003, and 0.5 in the Fig. 3. It can be observed that the
mode powers exhibit great orthogonality in the PT-symmetric phase. When the system enters
the PT-broken phase, this orthogonality is lost, and the inner product of mode power becomes
non-zero. Thus, it can be inferred that the different mode power flows remain independent, which
makes the gain and loss of the system power balanced. If the mode power coupling occurs, the
system power may exhibit unstable behaviors. In the section that follows, it will be argued that
the mode power transmission properties of PT-symmetric waveguides under different system
states corresponding to various k values.
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Fig. 2. Real part (a) and imaginary part (b) of the effective mode index (neff ) versus k
calculated by the FDFD method (red dots) and COMSOL (Gray solid lines). (c)(d) Re{Ex}
for "symmetric" and "antisymmetric" supermodes at k = 0.008; (e)(f) Re{Ex} for modes
with loss and gain at k = 0.05, respectively.

(a) (b)

Fig. 3. The diagram of mode power orthogonality under (a) k = 0.003, (b) k = 0.5.

In order to study the effects of different structural parameters on the EP thoroughly, we calculate
the neff of eigenmodes under the different material parameters, nr = 4.00, 3.75, 3.48, 3.35; w =
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0.55 µm, 0.5 µm, 0.45 µm, 0.425 µm; and h = 0.325 µm, 0.275 µm, 0.225 µm, 0.205 µm. The
real parts of the calculated neff are depicted in Fig. 4. The real parts of neff at the EP have been
aligned to a common line for easier comparison, the actual values of which are displayed in bar
charts. The green curve is the result for the original waveguide parameters: nr = 3.48, w = 0.45
µm, and h = 0.225 µm. The results show that when the nr, width, and height of the waveguide
increases individually, the real part of the neff increases and the k value of the structure decreases
at the EP. If we need smaller k value of the material parameters to achieve the phase transition,
the value of the nr, width, and height of the waveguide could be designed to be larger. This
finding could be useful for the engineering design of PT-symmetric waveguides. Nevertheless,
there exist several structural manufacturing challenges that need to be addressed. Firstly, gain
and loss are often influenced by external factors, such as temperature fluctuations, fabrication
tolerances, and material imperfections, making it difficult to achieve the necessary precision in
control. Secondly, high gain can introduce noise or lead to material degradation over time, which
impacts the reliability and longevity of devices. Thirdly, achieving the required geometrical
and refractive index precision during fabrication is challenging, especially as nanofabrication
techniques are subject to imperfections and variability. Finally, if the system operates at an EP,
even small perturbations can lead to large changes in the output, which can be beneficial for
sensing but problematic for switching devices that require robustness.

2.2720
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2.5772
2.3856

2.4676
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2.1979

(a) (b) (c)

2.5988

2.1145

2.8985

2.2720

Fig. 4. Real part of the neff aligned to a common line with different (a) nr, (b) width, (c)
height of the waveguide. The actual values of which are displayed in bar charts.

3.2. Extraction of transmission parameters

Based on the aforementioned CMT, we first calculate the coupling coefficients and the power
transmission of the lossless coupled waveguides. The FDFD numerical simulation results show
excellent agreement with the theoretical results as shown in Fig. 5, where the relative L2-norm
error is 2%. The effective indices of the symmetric and antisymmetric supermodes are calculated
to be Ns = 2.2863 and Na = 2.2404. Hence, the coupling length can be calculated [53] using the
equation Lc =

λ
2(Ns−Na)

, where λ is the wavelength. The result is equal to 16.885 µm. For the
PT-symmetric waveguides, the electric field distributions |Etotal (x, z)| by the FDFD is plotted
in Fig. 6(a) for k = 0.01 (below the critical value) and in Fig. 6(b) for k = 0.05 (above the
critical value). The mode power transmissions at different k values are shown in Fig. 7, the
numerical result for the extraction of transmission parameters is performed by the cross product
of the original guided mode field and the total field by the Eq. (40) or (41), coincides with
the theoretical results. It is evident that the waveguide coupler exhibits significantly different
behaviors when the gain/loss coefficient is below and above the critical value in Fig. 6. Below the
critical value, light exchanges periodically between the two waveguides, but in an asymmetric
manner. Above the critical value, the behavior of coupler changes significantly, where most
of the power concentrates in the gain waveguide, fitting a typical feature of PT-broken phase.
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Accordingly, the power transmission curves show the asymmetric oscillations and the monotonic
increasing properties respectively in Fig. 7. It also shows that the oscillations of the curve become
more intense with the increase of k below the critical value. We calculate the relative L2-norm
errors to be 4.16%, 4.81%, and 6.39% with the increase of k value. The reason for the larger
errors might be the instability and evolution characteristics of guided mode fields approaching
the EP. In summary, in the PT-symmetric phase, the eigenmodes have real eigenvalues, and the
transmission modal fields are generally well-confined, as the gain and loss profiles are carefully
balanced. And the mode transmission parameters are typically symmetric. In the PT-broken
phase, non-reciprocal scattering occurs. The gain in one direction and loss in the other causes
unidirectional transmission or reflection. The group velocity dispersion can become highly
anomalous. In order to validate the accuracy of the theoretical method, we also compare the
power transmission results by the CCMT as analyzed in Section 2.3. The Fig. 8 exhibits that
the CCMT does not apply to the non-Hermitian problem of PT-symmetric waveguide. The
propagation constant of the complex conjugate in the Eqs. (37) and (38) introduces error of the
phase shift. For the real propagation constant of the lossless waveguide, the complex conjugate
will not produce any additional effects and the error will be eliminated. Therefore, it can be
concluded that the CCMT works fine for the lossless system, but fails to capture the major power
features of the PT-symmetric waveguide in our case. The CMT we used has successfully obtained
the power transmission properties.

Fig. 5. Power exchange of lossless waveguides as a function of the propagation distance,
where the solid curves are obtained from the FDFD method while the dashed curves from
the CMT. The inset shows the distribution of transmitted electric field.

Furthermore, we can observe that the sum of the two mode powers exhibits oscillation
characteristics during transmission in Fig. 7. It corresponds to the actual power of the system
defined by P =

∬
s(E(x, y) × H∗(x, y) + E∗(x, y) × H(x, y))dxdy, where the integration region S

refers to the cross section of the whole structure including the two waveguides and the surrounding
air. It is to be noted that the symmetry transformation is related to the Hamiltonian of the system.
For the PT-symmetric system, although the Hamiltonian of the system may be non-Hermitian, it
possesses symmetry referring to invariance under parity (P) and time reversal (T) operations.
Hence, there must exist a conserved quantity taking forms analogous to the power flow, which is a
constant of motion independent of distance z when the PT-symmetry is unbroken. It is intrinsically
linked to the Hamiltonian invariant of the system. In this work, we express the quantity as
Q =

∬
s(E(x, y) × H∗(−x, y) + E∗(−x, y) × H(x, y))dxdy [47]. In order to explore the individual

mode power transmission properties in the conserved quantity, we refer to the calculation of the
test localized transverse guided mode fields Elm and Egm in the lossless system. They could be
equivalently regarded as the sum and difference of the two system supermodes. Thus, we perform
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(a) (b)

Fig. 6. Electric field distribution |Etotal(x, z)| along the propagation direction of the
PT-symmetric waveguides at (a) k = 0.01 and (b) k = 0.05.

(a) (b)

(c) (d)

Fig. 7. The lossy and gain mode power transmission at different k (a) 0.003; (b) 0.008; (c)
0.01; (d) 0.05. The main panels show the power in the two waveguides as a function of the
propagation distance calculated by the CMT and the FDFD method. The results presented
in the insets correspond to the conserved quantity calculated by the composite modes ϕlm
and ϕgm
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(a) (b)

Fig. 8. The lossy and gain mode power transmission at k = 0.008 using the (a) CMT and (b)
CCMT.

similar operations on the supermodes of the PT-symmetric system, i.e., E′

lm = Emode1 + Emode2,
E′

gm = Emode1 − Emode2, where the Emode refers to the transverse guided mode field of the entire
structure. Then the power of "lossy mode" in the conserved quantity could be obtained by
Qlm =

∬
s(E

′

lm(x, y) × H∗(−x, y) + E∗(−x, y) × H′

lm(x, y))dxdy. In this case, we choose E′

lm as the
excitation source for the entire system, which differs from the previous case that uses the guided
mode field of the single lossless waveguide as the excitation source. The schematic diagram is
shown in Fig. 9. The gray shaded area denotes the stretched-coordinate perfectly matched layer
absorbing boundary conditions at all boundaries of the simulation domain [54–56].

Loss

GainGain

Loss

(a) (b)

lossless mode composite mode

Fig. 9. The schematic diagram of excitation by the different mode sources. (a) lossless
mode source input from the lossless medium and (b) composite localized mode source input
from the left side of the whole structure.

In the numerics, Qlm and Qgm are calculated and the results are shown in the insets of Fig. 7. It
can be observed that in the PT-symmetric system and below the critical value, the Qlm and Qgm
curves show symmetric transmission behaviors. The distinction between the curves plotted by
Qlm, Qgm and Plm, Pgm is characterized by the phase differences. And the conserved Q value
is equal to the average of the integrated actual power of the original modes. It indicates that
the introduction of the permittivity imaginary part with opposite signs causes the oscillation,
and the equilibrium value of the oscillation is associated with the Hamiltonian invariant of the
system. In addition, the coupling lengths could be calculated as 1.703 µm, 1.85 µm, and 1.97
µm by the formula Lc =

λ
2(Ns−Na)

, which are consistent with the periodic lengths of the two
symmetric curves of Qlm and Qgm for different k in the insets. For larger k above the critical value,
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the original conservation relation is broken, but the integrated quantities of Qlm, Qgm maintain
an equal increasing trend. Besides, we study the symmetric lossy and gain dual waveguides.
Differing from the PT-symmetric system, the quantities of Qlm and Qgm equal to the two actual
mode powers in the individual waveguides with no phase difference, both of which agree well
with the theoretical solutions of CMT as shown in Fig. 10. The sum of the power of the two
modes exhibits the decreasing trend and increasing trend respectively, which are distinct from the
oscillation characteristics and the conserved quantity of the PT-symmetric system. The results
show that the conserved quantity exists in the Hermitian system, as well as in the system of
Hamiltonian invariant, but is not present in the normal lossy system.

(a) (b)

Fig. 10. The mode powers of the (a) lossy dual waveguides and (b) gain dual waveguides at
k=0.003.

4. Conclusions

Prior work has documented the generalized coupled mode formalism in reciprocal waveguides
with gain, loss and studied the dispersion of the PT-symmetric waveguide. However, these
studies have not focused on the mode power transmission or the system power properties of such
non-Hermitian structure. In this work, we derive the different orthogonality relations of complex
modes and construct the coupled mode equations between the original and adjoint system to
extract the transmission parameters. The orthogonality and conserved properties of system
power under the phase transition are also analyzed. We find that the power transmission results
from the coupled mode equations show excellent agreement with numerical simulations, while
the results from CCMT fail to capture the features. Moreover, the mode power transmission
within the individual waveguide exhibits periodic oscillations and the system power displays
orthogonality, both phenomena are disrupted as the EP is approached. The conserved quantity Q
is observed in the PT-symmetric phase, which is consistent with the average sum of the actual
mode power. These findings extend the employment of the CMT in the non-Hermitian structure
and demonstrate the extraordinary power properties of the PT-symmetric waveguide. In addition,
the lossy and gain mode power of the conserved quantity are extracted by the combination
of the supermodes, which provide a new perspective for the analysis of conserved quantity.
The symmetric lossy or gain dual waveguides are also calculated to exhibit the decreasing and
increasing trend of system power differing from the PT-symmetric waveguide, which show the
effect of the extinction coefficients on the system power. Our work will be helpful for the direct
analysis of the mode power transmission in the PT-symmetric system. Furthermore, the specific
power properties of the non-Hermitian system will pave a new way for designing the various
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optical waveguide structures or light switching applications. The future work should include the
power evaluation of multimode or hybrid modes for more complicated structures.
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