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Abstract—This article presents a robust quantum-inspired
optimization framework for designing 2-bit quantized phase-
only metasurfaces capable of precise near-field multiobjective
control. Addressing the limitations of conventional methods
[e.g., phase gradient (PG), simulated annealing (SA), genetic
algorithm (GA)] in navigating the complex, high-dimensional
design space and handling competing objectives, we employ the
discrete simulated bifurcation (dSB) algorithm. A key innovation
is the effective mapping of the electromagnetic problem to
a quadratic unconstrained binary optimization (QUBO) prob-
lem for 2-bit phases, extensible to higher order unconstrained
binary optimization (HUBQO) for multiobjective scenarios (e.g.,
with a penalty method). To tackle the inherent tradeoffs in
multiobjective focusing, we propose two novel strategies: an
adaptive weighting scheme for achieving arbitrary intensity
ratios, and a penalty method for enforcing energy uniformity.
Numerical results demonstrate dSB’s superior performance in
single-point focusing, achieving high efficiency and a clean
focal spot compared to benchmark methods. For multipoint
focusing, dSB consistently achieves higher total efficiency and
produces qualitatively cleaner patterns with significantly less
energy leakage and interfocal interference, even for complex
asymmetric patterns (like Z-shape). The practical fidelity of
our optimized designs was rigorously validated through com-
prehensive full-wave simulations using HFSS, which inherently
account for intricate metasurface coupling effects and real-world
electromagnetic interactions, thereby confirming the robustness
of our algorithmic approach. Furthermore, scalability analy-
sis confirms the algorithm’s favorable polynomial complexity
[O(Nins = Nai)1, making it highly efficient for large metasurface
arrays. This work provides a versatile and reliable approach for
designing advanced near-field metasurfaces with intricate, user-
defined functionalities.

Index Terms—Combinatorial optimization, near-field focusing,
phase quantization, phase-only metasurfaces, quantum-inspired
method.
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I. INTRODUCTION

ETASURFACES, artificially engineered 2-D metamate-

rials, have significantly advanced electromagnetic wave
manipulation due to their exceptional ability to precisely con-
trol phase, amplitude, and polarization at subwavelength scales
[1], [2], [3]. Among these capabilities, quantized phase-only
arrays, achieved through the judicious design of subwave-
length structures, are particularly attractive [4], [5], [6]. This
approach not only simplifies control mechanisms by limiting
the number of phase states, but also offers economic benefits
in fabrication and integration, and enables highly efficient
manipulation of electromagnetic waves, ultimately facilitating
the development of compact, high-performance devices [7].
Consequently, these versatile platforms are widely applied
across diverse fields, ranging from advanced optics and holog-
raphy to efficient wireless communications and biomedical
sensing [8], [9], [10]. While much early research focused on
far-field phenomena, the near-field manipulation capabilities
of metasurfaces have recently garnered substantial attention.
This growing interest stems from their unique capacity to
control evanescent waves and provide highly localized field
enhancements, unlocking exciting possibilities beyond tra-
ditional far-field applications. Specifically, this area holds
immense promise for high-resolution imaging, enabling super-
resolution capabilities by overcoming the diffraction limit;
nonradiative energy transfer, crucial for efficient wireless
power transmission over short distances; advanced sensing,
allowing for highly sensitive detection of subtle changes in
local environments; and secure near-field communications,
providing robust data transfer in close proximity [11], [12],
[13], [14], [15], [16]. These burgeoning applications under-
score the critical need for sophisticated methods that can
effectively control and optimize near-field electromagnetic
fields to achieve high-performance functionalities.

Despite the immense potential of near-field metasurfaces,
achieving precise and efficient near-field focusing, particu-
larly with quantized phase-only arrays preferred for their
cost-efficiency and hardware simplicity, remains a significant
challenge. Unlike far-field scenarios where wave propagation
is relatively straightforward, near-field interactions involve
complex evanescent waves and strong coupling effects, making
the design and optimization highly intricate [17]. Existing
design methodologies prove inadequate in addressing these
complexities. Semianalytical approaches (e.g., phase gradient
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TABLE I
COMPARISON OF PRESENT WORK WITH PREVIOUS STUDIES

‘Work Optimization Target Application Scenario Array Size Core Contribution

Prior Work A  Far-field beamforming  Far-field communication 10 x 24 First application of a quantum-inspired

[38] (single/ multi-beam with algorithm to antenna arrays for far-field
nulls) beamforming

Prior Work B  Space-time coding meta-  Space-time modulation, har- 20 X 20 First application of a quantum-inspired

[39] surface (frequency domain ~ monic beamforming algorithm to space-time coding meta-
control) surface design

Prior Work C  Single-point near-field fo-  Near-field mmWave communi- 41 X 41 First application of the quantum-

[40] cusing cation inspired algorithm to single point near-

field focusing
Present Work Multi-objective near- Near-field imaging, electro- 41 x 41 First application of a quantum-inspired

field control (multi-point
focusing & power
homogenization)

communication

magnetic therapy, multi-task

method to multi-objective near-field
control with adaptive weighting and
a penalty method

(PG) synthesis), while quick, are fundamentally constrained
to simple scenarios due to their reliance on geometric
optics approximations, and inherently suffer from sidelobe
amplification in practical implementations caused by phase
quantization errors [18], [19]. Stochastic optimization algo-
rithms (e.g., genetic algorithms (GAs), simulated annealing
(SA), particle swarm optimization) attempt to address non-
convexity through stochastic search mechanisms [20], [21],
[22]. However, their prohibitive computational complexity and
suboptimal convergence behavior often render them impracti-
cal for large array optimization. More recently, deep learning
approaches aim to establish end-to-end mappings between
electromagnetic signatures and beam parameters [23], [24].
Nevertheless, they suffer from critical data dependence; train-
ing requires exhaustive phase-field datasets whose acquisition
incurs prohibitive experimental costs. Consequently, current
approaches confront a fundamental trilemma—the mutually
exclusive demands of solution optimality, optimization effi-
ciency, and physical realizability. This highlights an urgent
need for more efficient and robust optimization techniques
capable of navigating the complex design landscape of near-
field metasurfaces to achieve desired focusing performance.
To overcome these challenges, quantum and quantum-
inspired algorithms have emerged as promising alternatives
[25], [26], [27]. These algorithms draw inspiration from
quantum mechanics principles like quantum superposition,
entanglement, or tunneling, enabling them to explore vast
solution spaces and escape local optima more effectively
than traditional methods [28], [29], [30]. For instance, quan-
tum annealing has shown remarkable success in optimizing
complex combinatorial problems across various scientific and
engineering disciplines [31], [32]. More recently, simulated
bifurcation (SB) optimization, a novel quantum-inspired algo-
rithm, has garnered significant attention for its ability to
efficiently solve large-scale higher order unconstrained binary
optimization (HUBO) problems [33], [34], [35]. This class
of algorithms is particularly well-suited for electromagnetic
design problems where the optimization landscape is often
rugged, nonconvex, and fraught with numerous local minima
[36], [37]. Their inherent ability to navigate complex energy
landscapes makes them ideal candidates for the intricate

design of metasurfaces, especially when aiming for highly spe-
cific and challenging near-field functionalities. Our group has
successfully borrowed the quantum-inspired algorithm to solve
complex electromagnetic design problems. Table I provides a
comprehensive comparison of our previous and current work,
clearly highlighting the unique contributions of this article
[38], [39], [40].

Building on the promise of quantum-inspired optimization
and addressing the limitations of existing methods, this arti-
cle makes several significant contributions compared to our
previous conference work [40].

1) First, this work presents a novel optimization frame-
work that pioneers the application of a quantum-inspired
algorithm to the intricate near-field focusing problem.
We rigorously demonstrate its efficacy and superior
performance through comprehensive numerical results
and full-wave simulations.

2) Second, recognizing the inherent multiobjective nature
of advanced near-field manipulation, we propose two
distinct strategies for multiobjective optimization: a
time-varying weight adjustment scheme and a novel
objective function incorporating a penalty term. We
thoroughly analyze the sensitivity of the multiobjective
weights, providing a versatile and generalizable frame-
work for achieving desired performance tradeoffs.

3) Finally, through extensive comparative studies, we con-
clude that a combination of analytical PG synthesis
for single-point focusing and our proposed quantum-
inspired optimization scheme for multiobjective Pareto
front exploration offers an optimal balance between
computational efficiency and superior focusing perfor-
mance for near-field scenarios.

This work provides a robust and efficient approach for design-
ing advanced phase-only quantized near-field metasurfaces.

The remainder of this article is organized as follows.
Section II establishes the theoretical framework and formulates
the near-field focusing problem, detailing metasurface unit-
cell characteristics, near-field electromagnetic field calculation,
and the mapping to a binary spin model through Hamilto-
nian formulation, including single-point focusing method and
multipoints balancing strategies. Section III introduces the
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Fig. 1. Proposed quantum-inspired optimization framework for near-field
metasurface design. The framework consists of six main parts, whose detailed
workflow and functions are elaborated in Sections II-IV.
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quantum-inspired SB optimizer, discussing its various forms,
underlying dynamics, and its performance evaluation. Com-
prehensive numerical results are presented and discussed in
Section IV, which includes parameter setup and benchmarking
of conventional methods, single-point focusing performance,
detailed multipoint focusing scenarios (yoz and xoy plane
targets), and an in-depth analysis of multiobjective tradeoffs
and full-wave verification. Finally, Section V concludes this
article by summarizing our key findings and outlining potential
avenues for future research.

II. THEORETICAL FRAMEWORK AND
PROBLEM FORMULATION

This section details the theoretical framework of our
proposed quantum-inspired optimization for near-field meta-
surface design. To provide a clear overview of the entire
optimization procedure, we present the flowchart in Fig. 1.
This figure summarizes the complete process from mapping
the complex electromagnetic problem to a binary variable
model, solving it with the discrete SB (dSB) algorithm,
and finally verifying its performance. Sections II-A-II-D will
discuss each step of the flowchart in detail.

A. Metasurface Phase Modulation and Spin Mapping

The designed metasurface unit-cell is illustrated in Fig. 2(a),
where the electromagnetic simulation was conducted using
the commercial software Ansys HFSS. Through the use of
periodic boundary conditions in conjunction with Floquet
ports, the simulation ensured accurate characterization of the
reflection properties under infinite periodic array conditions.
The red rectangular patch in Fig. 2(a) represents the p-i-n
diode, specifically the SMP1320-040LF from SKYWORKS,
along with its equivalent circuit model. The p-i-n diode
exhibits distinct electrical characteristics in its two operational
states: in the OFF state, it behaves as an LC circuit, while
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Fig. 2. Metasurface unit-cell design and performance characteristics. (a) Unit-
cell structure with p-i-n diode and equivalent circuit model. (b) Geometric
parameters of the fabricated unit-cell. (c) Reflection loss versus frequency for
the four p-i-n diode states: State 1 (“—1, —17), State 2 (“~1, +17), State 3
(“+1, —17), and State 4 (“+1, +17). (d) Reflection phase versus frequency
showing 2-bit quantization performance at 15 GHz.

in the ON state, it functions as an RL circuit. The geometric
parameters of the fabricated unit-cell are presented in Fig. 2(b),
with the substrate having a relative permittivity of &, = 2.65
and a loss tangent of tand = 0.001. The detailed dimensions
of the unit-cell are as follows: Ly; = 0.95 mm, Ly, = 2.02
mm, L3 = 1.88 mm, L,y = 525 mm, Ly, = 1.34 mm,
L3 =326 mm, L,y =525 mm, P =7 mm, 2= 1.5 mm, and
R =0.2 mm.

The phase modulation characteristics of the metasurface
unit-cell demonstrate excellent 2-bit quantization performance
at 15 GHz, as shown in Fig. 2(d). The four distinct unit
states are labeled in the figure legend as State 1 (“—1, —17),
State 2 (“—1, +17), State 3 (“+1, —17), and State 4 (“+1,
+17), exhibiting well-defined phase differences that conform
to the ideal 2-bit reflection unit phase distribution. When
both p-i-n; and p-i-n, are in the OFF state, representing the
“—1, —1” unit configuration (State 1), the reflection phase
is 66°. The “—1, +1” unit state (State 2), achieved with
p-i-n; OFF and p-i-n, ON, yields a reflection phase of -21°. The
“+1, —1” unit state (State 3), with p-i-n; ON and p-i-n, OFF,
produces a reflection phase of -112°. Finally, when both
p-i-n; and p-i-n, are in the ON state, representing the “+1,
+1” unit configuration (State 4), the reflection phase reaches
158°. As illustrated in Fig. 2(c), the reflection loss remains
within —2.3 dB across all four p-i-n diode states (State
1-State 4), indicating minimal power dissipation during phase
modulation. These results demonstrate that the unit cell’s
reflection characteristics closely approximate those of an ideal
2-bit discrete phase modulator, making it suitable for advanced
metasurface applications requiring precise phase control and
efficient electromagnetic wave manipulation.

B. Near-Field Electromagnetic Field Calculation

To accurately design and optimize metasurfaces for near-
field focusing, precisely calculating the electromagnetic field
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Fig. 3. Metasurface array design and near-field distribution optimization.
The 20 x 20 metasurface array, composed of the designed unit cells, serves
as an illustrative example. The three focal points Py, P>, and P3 represent a
typical near-field distribution pattern. The optimization algorithm determines
the p-i-n diode states across the entire metasurface to generate the desired near-
field distribution. All simulations are configured with the metasurface on the
xoy plane, modulating x-polarized normally incident plane waves, ensuring
full-wave simulation results closely approximate the near-field distribution
calculated under quantized phase constraints for algorithm validation.

distribution in the proximity of the metasurface is essential.
The metasurfaces are placed in the xoy plane as illustrated
in Fig. 3. Unlike far-field scenarios, near-field interactions
involve complex evanescent waves and strong coupling effects
between the metasurface elements and the focal plane, neces-
sitating a rigorous electromagnetic foundation.

The electromagnetic foundation of our methodology is
established through the first-principles Maxwell formulation.
Departing from conventional scalar potential approximations,
we rigorously model the vector field interactions using dyadic
Green’s function formalism. The electric field distribution E(r)
generated by an N-element metasurface array, modeled as a
planar configuration of current sources (e.g., equivalent electric
dipoles or surface currents) positioned in the xoy plane at z = 0
as illustrated in Fig. 3, can be expressed as [41]

N
E®) = —jou Y / G(r,1') - 1,0 )dr 0
n=1

where J,(r") represents the equivalent current density of the
nth metasurface element located at r;,, which is directly related
to its complex transmission coeflicient (amplitude and phase).
w is the angular frequency, and pu is the permeability of the
medium. The term G(r,r’) € C3*3 denotes the dyadic Green’s
function, which describes the vector propagation of the elec-
tromagnetic wave from a source point r’ to an observation
point r. For free space, the dyadic Green’s function can be
expressed in terms of the unit dyad I and the scalar Green’s
function g(r,r’) as [41]

G(r,r') = (I + Z—zv) g(r,r’) 2)
where k is the free-space wavenumber (k = w+Jue), and
g(r,r’) is the scalar Green’s function for free space, given
by g(r,r’) = (e~ %'y /(4n|r — r’|). This method allows for a
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precise calculation of the complex vector near-field dis-
tribution, fully accounting for the intricate electromagnetic
interactions.

While it is theoretically possible to incorporate the exact
Jn(r"), in this work, we assume independent unit responses.
This assumption not only allows for highly efficient and scal-
able computation but also makes our algorithm extensible to
large-scale problems. However, we acknowledge that in real-
world applications, nonideal factors such as mutual coupling
between units and the effects of the feed network are vital
and must be considered. Therefore, our subsequent full-wave
simulation work is indispensable for verifying the effectiveness
of our method under realistic physical conditions.

C. Mapping Near-Field Focusing to a Binary Spin Model:
Hamiltonian Formulation

The successful application of quantum-inspired optimiza-
tion algorithms, such as the dSB optimizer used in this work,
critically depends on effectively mapping the complex electro-
magnetic field problem into an equivalent binary spin model
[42], [43], [44], [45]. This transformation allows us to leverage
the powerful search capabilities of these algorithms to navigate
the vast combinatorial space of possible metasurface designs
by casting the problem as either a quadratic unconstrained
binary optimization (QUBO) problem or a HUBO problem
[46], [47]. For the 2-bit phase quantization explored in this
article, the problem naturally maps to a QUBO formulation.
It is worth noting that this framework is not limited to
the specific 2-bit unit demonstrated here. As long as the
complex response of a unit cell in its various states can be
obtained through electromagnetic simulation or measurement,
it can be directly incorporated into our framework. Similarly,
our prior work has successfully extended this approach to
3-bit phase control, which corresponds to an HUBO problem,
demonstrating the versatility of mapping and algorithm solving
[38].

For a metasurface with b-bit discrete phase control, each
phase variable ¢, € {27k/2” | k = 0,1,...,2° — 1} is encoded
through b spin variables {s,,1, ..., su} € {—1, +1}°. The general
phase encoding is achieved via the expansion

2[7—]
e = Z Cr 1_[ Sni 3)
k=1 €Ty

where Z; indexes the spins involved in the kth interaction
term. Unlike binary or integer representations that may require
artificial one-hot constraints or O(b) bits per phase shifter, our
spin encoding leverages the intrinsic {—1,+1} symmetry of
spins, allowing b spins to naturally represent 2” distinct phase
states. Specifically, for the 2-bit encoding (b = 2) employed in
this article, each metasurface element’s phase is represented by
two spins (s, and s,,). This allows for 22 = 4 distinct phase
states. The complex phase expression for the nth element is
given by

e = c18y + a2 4)

where ¢; = (1 + j)/2 and ¢; = (1 — j)/2. In this 2-bit case, the
product term [ [,z s, in (3) is a single spin s,;. For higher
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bit quantizations, the encoding scheme is more complex and
referred to in our previous work [38].

To formulate the problem, we define J,pae(r’) as the
fixed, unmodulated current density profile of the nth meta-
surface element, which inherently carries its magnitude and
initial phase response (derived from full-wave simulations
or measurements). The phase modulation is then applied by
multiplying this base current profile by the spin-encoded phase
factor. Thus, inserting the 2-bit phase encoding of /%" from
(4) into the fundamental electric field expression (1) (from
Section II-B), we obtain the spin-encoded field distribution
E(r) at any observation point r

N
E(r) = —jou Z (C18u1 + C2802) / G(I‘, I‘/) : Jn,base(r/)dr/ )

n=1

where the integral term f G(,r) - Jnbase(r)dr’ represents
the complex electric field contribution of the nth metasurface
element to the observation point r, specifically from its unmod-
ulated base current profile. The term (c;s,; + ¢25,2) then acts
as a spin-dependent phase modulator for this contribution.

To optimize the metasurface for desired near-field focusing,
we define a Hamiltonian H as an objective function whose
minimization corresponds to achieving the target electromag-
netic field distribution. This transforms the electromagnetic
design problem into a combinatorial optimization task solvable
by the dSB optimizer. For maximizing the field intensity at
a target point ry, the Hamiltonian is defined as the negative
squared magnitude of the electric field at that point

H = -E*(ro) - E(ro). (6)

Now, we substitute the spin-encoded field distribution from
(5) into (6). For conciseness, we define the complex field
contribution of the nth element (originating from its base
current profile J, pase (r’) and propagated by the dyadic Green’s
function) to the observation point ry as

Ay (r) = —jwu / G(ro, 1) - Jypase(r)dr’. (N
Then, the spin-encoded field at ry is
N
E(r) = Y (c15u1 + €25:0)A4(xo). ®)
n=1

Substituting this into (6), the Hamiltonian becomes

N *
H = - (Z(clsnl + CZSnZ)An(rO))

n=1

N
: ( (c1Sm + C2sm2)Am(rO))
-1

N N
=YY Qunlcism + s (Crsm + casm)  (9)

where the coupling coeflicient Q,,, is defined as

Qun = — (A5 (1) - Ayu(ro)) - (10)
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This expanded form of the Hamiltonian directly reveals its
dependence on the binary spin variables. For the 2-bit encod-
ing used in this study, as shown in (4), the Hamiltonian in (9)
explicitly represents a QUBO problem.

For multiobjective optimization with K target points (e.g.,
energy distribution across several points), we generalize the
Hamiltonian as a weighted sum of individual objectives

K
M=) wi(-Ex) E®).

k=1

Y

By substituting the spin-encoded field for each target point ry,
and following a similar expansion as for the single-point case,
this multiobjective Hamiltonian also takes a QUBO form for
2-bit systems. The total coupling coefficient matrix would then
be a weighted sum of individual coupling coefficient matrices.

D. Multiobjective Optimization Strategies

Optimizing for a single focal point is a fundamental capa-
bility, and many advanced near-field applications demand
the simultaneous satisfaction of multiple, often conflicting,
objectives. For instance, designing for multiple focal points
might lead to uneven energy distribution among them. A
critical challenge arises because traditional single-objective
approaches, which often sum individual performance metrics
into a single Hamiltonian, can lead to degenerate solutions.
Physically distinct metasurface configurations yield similar
overall Hamiltonian values, but result in vastly different and
often undesirable near-field distributions. This phenomenon,
where the optimization successfully minimizes the numerical
objective but fails to capture the desired physical outcome, is a
form of energy degeneracy and is illustrated in Fig. 4, showing
various near-field patterns that share a comparable Hamilto-
nian value. To address these complex design challenges and
effectively explore the Pareto front of optimal solutions, we
propose two distinct multiobjective optimization strategies tai-
lored for near-field metasurface design: an adaptive weighting
strategy that dynamically balances competing objectives, and a
new objective function incorporating a penalty term to enforce
specific design constraints or performance targets.

1) Adaptive Weighting Strategy: Our first strategy employs
an adaptive weighting strategy to dynamically adjust the
influence of individual objectives throughout the optimization
process. This method enables the framework to converge
toward arbitrary predefined intensity ratios across multiple
focal points, offering significant flexibility in shaping complex
energy distributions beyond uniform goals. This contrasts
with static weighting in the original dSB framework, which
struggles to guide the optimization toward specific target
proportions.

At predetermined intervals At during the optimization, we
evaluate the intensity, I(#) = —Hi(t), for each of the K
individual target points. For each point k, we utilize a set of
predefined target intensity ratios {Rj,...,Rg}. This adaptive
scheme adjusts the weight wy(r + Af) so that the achieved
intensity I;(f) becomes proportional to its respective target
ratio R;. Objectives that are currently underperforming relative
to their target ratio (i.e., the ratio I;(f)/Ry is lower than average
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Fig. 4. A three-point focusing scenario where the Hamiltonian is defined
as the sum of target point energies. With the evolution of the total Hamil-
tonian during optimization, it decreases as the number of optimization steps
increases, with points A, B, and C marked. A, B, and C illustrate three distinct
spin configurations corresponding to different phase profiles, where the arrows
indicate spin up or spin down. While states A, B, and C all achieve the same
minimum Hamiltonian, their corresponding near-field intensity distributions
are significantly different. Configurations A and B result in nonuniform energy
distribution, whereas C yields the desired uniform energy distribution across
the target points.

across all points) will receive an increased weight, prioritizing
their improvement.

The weight update mechanism proceeds as follows. The
new weight for each objective is directly proportional to its
target ratio and inversely proportional to its current achieved
intensity. This ensures that objectives whose current intensity
is significantly below their desired proportion will receive pro-
portionally higher weights, thereby focusing the optimization
effort where it is most needed

wi(t + At) o< (12)

k
Ii(t)+ €
where € is a small positive constant (e.g., 1071%) added to
the denominator to prevent division by zero, especially during
early optimization steps when intensities might be very low.
After calculating these raw proportional weights, they are
then collectively normalized to maintain a constant sum (e.g.,
25:1 wi(t + Ar) = K), preventing the overall Hamiltonian
magnitude from diverging. This iterative adjustment allows
the algorithm to focus computational effort on the objectives
that are most deficient relative to their individual target ratios,
promoting a balanced and robust overall solution tailored to
the desired arbitrary energy distribution. The choice of the
update interval (number of steps) Ar is critical: an interval
that is too short can introduce noisy fluctuations and prevent
stable convergence, while an interval that is too long might
delay rebalancing until the optimization is already close to
local convergence, reducing the scheme’s effectiveness.

While the concept of dynamically adjusting weights is
widely used in multiobjective optimization, the novelty of our
methodology lies in its creative and deep integration with the
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specific characteristics of the dSB algorithm. First, each of our
weighting parameters is deeply bound to a specific physical
objective (e.g., focusing uniformity, power efficiency). This
provides valuable physical insight and allows our optimization
to act as a direct control of physical phenomena, rather than a
purely abstract mathematical calculation. Second, our strategy
introduces a dynamically adjusted potential field, which con-
stitutes a fundamental innovation at the physical layer of the
SB algorithm. While standard SB theory is built on a fixed
potential field, our strategy dynamically adjusts the objective
function’s weights after a specific number of evolution steps
based on the current solution, and then continues the evolution
in this new potential field. This dynamic approach utilizes the
algorithm’s “memory” from the evolution process and uses
it as a basis for a more refined search in a promising region,
effectively pioneering the algorithm in a dynamic optimization
mode to solve complex electromagnetic problems.

2) Penalty Strategy: Our second multiobjective strategy
employs a penalty method to directly enforce desired relation-
ships among the intensities of multiple focal points. While
the adaptive weighting scheme (Section II-D1) dynamically
adjusts the influence of objectives, the penalty method directly
modifies the Hamiltonian by adding a regularization term that
penalizes deviations from the desired energy balance. This
approach is particularly useful for achieving a more uniform
energy distribution among multiple focal points or ensuring
that specific energy differences are minimized.

For a set of K target points, the Hamiltonian is augmented
with a penalty term that minimizes the squared differences in
energy between all pairs of points. The objective function is
modified as

K K
Huoa(®) = Hroews + A0 Y D (Im) = [;x)>  (13)
i=1 j=i+1

where Hgocys 1S the primary focusing Hamiltonian, [;(r) and
I;(r) represent the intensity at the target points i and j,
respectively, and A(f) is a positive, time-dependent penalty
scaling coefficient. To implement this penalty effectively, we
adopt a dynamic constraint adjustment strategy for the penalty
coeflicient A(¢). We treat A(f) as a dynamic parameter that grad-
ually increases as the optimization progresses. This approach,
often referred to as ‘“softening” the constraints, allows the
optimization process to explore a broader solution space in the
early stages, where A(f) is small and the penalty is lenient. As
iterations proceed and the system’s “temperature” (borrowed
from the SA context) decreases, A(f) is progressively increased.
This guides the solution more strongly toward satisfying the
energy balance constraint, ensuring that the system converges
to a state that both achieves good overall focusing and adheres
to the desired energy distribution. This dynamic scaling of
A(?) is analogous to the temperature decay strategy in anneal-
ing algorithms, where a high temperature allows for greater
exploration and less stringent adherence to constraints, while
a low temperature enforces stricter compliance. Physically,
this penalty term directly minimizes the squared difference
in energy between every pair of target points, thereby encour-
aging a more equal energy distribution among them.
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Crucially, since each intensity term [;(r) is inherently a
quadratic function of the spin variables (as established in
Section II-C), the squared difference (/;(r)—1 j(r))2 introduces
up to fourth-order interactions among the spins. Consequently,
incorporating this penalty term transforms the overall opti-
mization problem into an HUBO problem.

III. QUANTUM-INSPIRED OPTIMIZATION ALGORITHM
A. SB Optimizer

The SB optimizer, first proposed by Goto [33], is a powerful
algorithm designed for efficiently solving large-scale combi-
natorial optimization problems, including QUBO and HUBO
problems. Conceptually, SB simulates the adiabatic evolution
of a system of coupled nonlinear oscillators, where the ground
state of the oscillator system corresponds to the optimal binary
solution (spin states of +1 or —1) of the target optimization
problem.

As the applications of the SB algorithm have expanded,
various forms have emerged, each tailored to different compu-
tational aspects or problem types [29]. The original continuous
SB (cSB) formulation typically involves the time evolution
of continuous oscillator amplitudes, where discrete binary
solutions are obtained through a binarization step at the
culmination of the simulation. In contrast, dSB, often referred
to as binary SB (bSB), directly evolves or enforces discrete
spin states (+1 or —1) throughout the optimization process.
This characteristic makes dSB/bSB particularly well-suited for
inherently binary optimization problems, as it bypasses the
need for a separate post-binarization step. Furthermore, while
all SB algorithms draw their conceptual roots from quantum
mechanics, the term quantum SB (qSB) is sometimes used
to denote formulations that maintain a closer fidelity to the
underlying quantum mechanical framework or are specifically
designed for potential execution on quantum hardware. In this
work, we employ the dSB optimizer for its direct applicability
to our discrete phase control problem, ensuring the solution
remains in the binary spin space throughout optimization.

The core of the dSB optimizer lies in a classical-mechanical
Hamiltonian that governs the time evolution of the oscillator
system. Crucially, the Hamiltonian of our metasurface opti-
mization problem, H (derived in Sections II-C and II-D), is
embedded directly into this dSB framework as the objective
function. This allows the dSB algorithm to leverage its internal
dynamics to minimize H, thereby finding the optimal metasur-
face phase configuration. The time evolution of the oscillator
variables (representing the continuous amplitudes x; and y;
of each oscillator, whose final signs determine the spins) is
described by a set of ordinary differential equations (ODEs),
derived from the system’s Hamiltonian

X = Ay, (14)

. &0 OH
s = —[K2 = p() + Al x, — 27
yi = —[Kx; = p(t) + A] x > 7%
These ODEs represent the classical approximation of the
underlying quantum system’s dynamics and form the funda-
mental basis for both ¢SB and dSB/bSB variants. Here, A
represents the detuning frequency, K is the Kerr coefficient,

15)
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and p(#) is a time-dependent parametric pumping strength
that gradually increases. All oscillator variables x and y
are initialized around zero. As p(f) progressively increases,
each oscillator undergoes a bifurcation and transitions into
a coherent state, where the final sign of x; determines the
corresponding spin variable’s state (+1 or —1). These final spin
states directly decode into the optimized phase configuration
of the metasurface.

In our specific implementation of the dSB optimizer, we
incorporate an explicit discrete enforcement mechanism: Once
an oscillator’s variable x; reaches a threshold indicating con-
vergence to either +1 or —1 (e.g., |x;] = 0.9), its state
is “locked” to that binary value for the remainder of the
optimization process. This ensures that the evolving solution
explicitly adheres to the binary spin constraint. Our dSB
framework employs a dual-criteria approach for convergence.
The primary termination condition is based on the locking
of all spin variables, indicating that a stable solution has been
found. The predefined maximum number of optimization steps
serves as a secondary, safeguard mechanism to prevent the
process from running indefinitely in highly complex scenarios.

The core of the dSB algorithm lies in the iterative solution
of a pair of ODEs. The main computational cost in each
iteration comes from calculating the full gradient vector. When
the iteration step is fixed as set in our numerical results in
Section IV, the theoretical computational complexity is always
O(N?) for the 2-bit unit, where N is the number of metasurface
cells. Specifically, in the single-point focusing scenario, the
Hamiltonian ‘H takes the form of a standard QUBO problem,
as shown in (9). For a single spin variable, such as s,,, the
derivative is given by

oH
asnl

2N
= Z in,msm- (16)
m=1

Since this summation involves 2N terms and must be per-
formed for each of the 2N spin variables, the total number
of operations scales with N2. For multipoint focusing with K
target points using the adaptive weighting strategy, the total
Hamiltonian is a weighted sum of the Hamiltonians for each
point, as in (11). In each dSB iteration, the gradient of the
total Hamiltonian is computed as

K
VHia = ) wiVHy.

k=1

a7

Since each individual gradient V7H; has a complexity of
O(N?), the computational complexity for multipoint focusing
is also O(N?). Furthermore, when using the penalty strategy
for energy uniformity, the total Hamiltonian includes a fourth-
order term. We compute its derivative with respect to each spin
variable using the chain rule. The gradient of the penalty term

K
Hpenatty = A1) Y_(Ei* = |E,I*)

i.j

(18)
is given by

aHpenalty _ ul 2 2 a|Ei|2 8|Ej|2
a—Sk—zﬁquE,w SED G ) 19

i.j
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The derivative of the quadratic terms, O|E|>/0sy, is a linear
function of the spin variables, and its calculation complexity
is O(N). When we scale this up to find the gradient for all
2N spin variables, the total complexity remains at the O(N?)
level.

A significant advantage of the SB algorithm family (includ-
ing dSB), particularly relevant for complex electromagnetic
design, is its inherent capability to directly handle HUBO
problems. While our current study’s 2-bit phase encoding
results in a QUBO problem, higher precision encodings (e.g.,
3- or 4-bit) and a 2-bit penalty strategy for multiobjective
optimization naturally lead to HUBO formulations. Unlike
many quantum annealing approaches that often necessitate
introducing auxiliary variables to reduce higher order terms
to quadratic ones [48], [49], [50], which may exceed the
qubit capacity of current quantum hardware, the SB algorithm
directly processes these higher order interactions within its
ODE-solving framework running on a classical computer [51].
This unique feature streamlines the optimization process for
problems with complex, high-order spin correlations. Further-
more, the SB optimizer inherently supports massive parallel
processing due to its simultaneous updating mechanism [34],
making it a highly efficient solution for large-scale optimiza-
tion tasks.

B. Performance Evaluation

1) Algorithm Dynamics and Convergence: In the optimiza-
tion process, the continuous oscillator variables (x;) evolve,
eventually settling into binary states, which are then decoded
to obtain the discrete phase values for the metasurface ele-
ments. We utilize a five-point focusing scenario as a case study
to demonstrate the evolution of both individual spins and the
Hamiltonians, employing our multiobjective strategies.

In a typical SB optimization run, the values of individual
oscillator variables x; initially fluctuate as the system explores
the energy landscape. Fig. 5(a) visualizes this dynamic evo-
lution, showcasing how representative x; values for individual
spins transition and stabilize in their final binary states over
optimization steps. This demonstrates the algorithm’s capabil-
ity to effectively navigate from a continuous search space to
a discrete solution. In this specific example, we observe that
all spins reach their binary +1 states after approximately 80
steps, indicating that the algorithm has effectively converged
to a stable and optimized solution.

For multipoint focusing problems, it is crucial to mon-
itor how individual objectives evolve under our proposed
strategies. Specifically, for the five-point beam focusing sce-
nario, we track the Hamiltonian of each of the five target
points (as relevant subcomponents of the total Hamiltonian)
as a function of time step (sampling every five optimization
steps). This allows us to observe how the adaptive weighting
scheme dynamically balances performance among competing
objectives. Fig. 5(b) illustrates this multiobjective convergence
behavior, showing the evolution of the individual Hamiltonian
components and providing insights into their respective bal-
ancing mechanisms. In this particular example, we observe
that an initially large discrepancy between the maximum and
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Fig. 5. Algorithm convergence and multiobjective dynamics. The horizontal
axis represents the discrete time steps of the algorithm. (a) Evolution of
Representative Oscillator Variables (x;) and Spin Fixing: This figure illustrates
the time evolution of the x; values for a few representative oscillators during
a SB optimization run for a five-point focusing scenario. (b) Evolution of
Individual Objective Hamiltonians in Multi-Point Focusing: This figure shows
the evolution of the Hamiltonian values for each of the five target points in a
multi-point focusing scenario. Different curves represent individual objectives.

minimum energy points is significantly reduced, leading to a
much more uniform final energy distribution.

2) Weight Sensitivity Analysis: The precise selection of
weighting coefficients is paramount in multiobjective opti-
mization, as it directly influences the final performance
tradeoffs and the balance among competing objectives. We
conducted a comprehensive weight sensitivity analysis for
our five-point focusing problem by systematically exploring
6> = 7776 unique weight combinations, where each weight
wy for the kth target point varied from 1.0 to 2.0 with a
step interval of 0.2. This exhaustive exploration allows us
to thoroughly understand the impact of these weights on the
achieved near-field focusing performance and to evaluate the
robustness of our proposed multiobjective strategies. The key
insights from this analysis are presented in Fig. 6.

Fig. 6 provides critical insights into the complex interplay
between weighting coefficients and multiobjective perfor-
mance. Fig. 6(a) illustrates the variation of overall uniformity
by changing w,4 and ws, while fixing wi, w,, and ws at 1.0.
This heatmap demonstrates the sensitivity of uniformity to
these specific weight combinations. We observe that even with
optimized weights, the best achieved uniformity is approxi-
mately 0.575, indicating that achieving perfect uniform energy
distribution is challenging for complex objectives. The dis-
tribution pattern reveals that optimal uniformity is typically
achieved when the ratio of ws/wy is approximately between
1.3 and 1.5.

Fig. 6(b) plots the results across all 6> weight combinations
in a multidimensional performance space, specifically showing
the tradeoff between total focusing energy and uniformity.
This scatter plot reveals the performance boundary and the
achievable Pareto front. It is evident that higher total focusing
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Fig. 6. Weight sensitivity analysis for multipoint near-field focusing. This
figure illustrates the complex relationship between weighting coefficients and
achieved performance in a five-point focusing scenario. (a) Uniformity as
a function of ws and ws. This heatmap visualizes the overall uniformity
of focal intensities, with wi,wy, and w3 fixed at 1.0. (b) Tradeoff between
total focusing energy and uniformity for all weight combinations. This scatter
plot reveals the achievable performance space, highlighting the Pareto front
(marked by red circles) representing optimal compromises between maximiz-
ing total energy and achieving high uniformity. (c) Boxplot illustrating the
distribution of weights for the top 10% uniformity results. The box represents
the middle 50% of the data, with the median marked by the line inside. The
lines extending from the box show the typical range of the data. Individual
dots outside the box represent outliers that are significantly different from the
rest of the set.

energy often comes at the expense of uniformity. The scatter
points on the Pareto front, highlighted by red circles, represent
a minority of the solutions that simultaneously achieve highly
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concentrated energy and relatively high uniformity. These
solutions represent the most desirable compromises, and the
final design selection would typically be made from this Pareto
front.

Fig. 6(c) presents a boxplot analysis on the distribution
of weighting factors (w;—ws) for the top 10% uniformity of
results in the explored parameter space. The figure clearly
demonstrates that wy, w3, and wy are relatively concentrated,
indicating these parameters play a vital role in achieving high
uniformity in this case. Furthermore, the presence of a few
outliers (the black dots) in the distributions of w;, ws, and
wy suggests that there are rare parameter combinations that
can still yield excellent uniformity despite not conforming to
the main pattern. This observation highlights the complexity
of the optimization problem, as the optimal parameter region
is difficult to find within the vast parameter space. And a
simple two-weight sensitivity analysis, as shown in Fig. 6(a),
is insufficient.

These analyses collectively indicate that the relationship
between weighting coefficients and achieved multiobjective
performance is highly sensitive and complex, making it
challenging to identify optimal patterns through simple grid
searches. This reinforces the competitive nature of resource
allocation in multiobjective optimization and validates that our
proposed multipoint optimization strategies are essential for
effectively guiding the optimization direction. Relying solely
on extensive grid search or conventional bisection methods
would result in significant waste of time and computational
resources for such intricate problems.

3) Scalability Analysis: To further evaluate the computa-
tional efficiency and practical applicability of the proposed
dSB method, we thoroughly analyze its scalability by examin-
ing the relationship between the problem size and the required
optimization time. In this case, the problem size is rigorously
quantified by the total number of binary spins (Ngpins), Which
is directly determined by the total number of metasurface
elements (Nejements) and the phase bit resolution (nyys), i.e.,
Nipins = Nelements X Hoits- We performed this scalability analysis
for three distinct near-field focusing scenarios: single-point
focusing, multipoint focusing with the adaptive weighting
scheme, and multipoint focusing using the penalty method,
fixing the maximum iteration step as 5.

Fig. 7(a) illustrates the raw optimization time (in seconds) as
a function of the total spin number (Ngpins) On a linear scale. It
clearly shows a nonlinear increase in computation time as the
problem size grows for all three scenarios. We observe that
single-point focusing requires the least computational time,
followed by multipoint focusing with the adaptive weighting
scheme. The penalty method generally demands the highest
computational time, indicating the increased complexity asso-
ciated with explicitly minimizing interpoint energy differences
and the higher order objective Hamiltonian we use.

To more rigorously quantify the scalability, the same data
is presented on a log-log scale in Fig. 7(b). This log-log
plot allows for the estimation of the empirical computational
complexity by fitting a power-law model (T o ngms) for
each scenario. The resulting fits indicate polynomial growth in
complexity across all methods: single-point focusing exhibits
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Fig. 7. Solving time of the dSB algorithm for different focusing scenarios.
This figure presents a comprehensive view of the dSB algorithm’s scalability.
(a) Raw optimization time (in seconds) as a function of the total spin number
(Nspins) on a linear scale. (b) Single-point focusing exhibits an approximate
O(N'%) scaling, adaptive weighting multipoint focusing shows O(N'7)
scaling, and the penalty method demonstrates O(N>%) scaling.

an approximate O(N'%) scaling, adaptive weighting multi-
point focusing shows O(N'7) scaling, and the penalty method
demonstrates O(N>%) scaling. This analysis corroborates the
O(N?) scaling discussed in Section III-A, confirming the
computational scalability of the dSB algorithm, which makes
it highly applicable to our near-field metasurface problems.
Although the algorithm imposes no fundamental limit on
problem size, practical constraints such as computation time
and memory usage become increasingly relevant as the number
of spins grows. To further address these challenges, future
work will explore strategies such as GPU acceleration and par-
allel computing, which hold promise for significantly reducing
optimization time for ultralarge-scale designs.

IV. NUMERICAL RESULTS AND DISCUSSION
A. Benchmarking and Parameter Setting
1) Benchmarking Methods: To validate the efficiency and
superiority of our dSB optimization algorithm, we benchmark
its performance against several widely adopted conventional
methods for metasurface phase optimization. These include
the analytical PG method, and two widely-used stochastic
optimization algorithms: SA and GA.
a) PG method: This is a conventional analytical
approach that compensates for the propagation phase differ-
ence from each metasurface element to the target focal position
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to achieve coherent superposition. It provides a direct, noniter-
ative solution based on geometric optics approximations. For
a desired focal point (xf,yr,zr), the required phase ®(x,,y,)
at each element (x,,y,) is typically given by

Oz, ) =~k /O = X2 + O = ¥ + 2.

Physically, this formula dictates that the phase applied by each
metasurface element must precisely compensate for the phase
accumulated by a wave propagating from that element to the
focal point, ensuring all waves arrive at the focal point in phase
and constructively interfere, essentially creating a spherical
wavefront converging to the target focus. While computa-
tionally efficient, this method is fundamentally constrained to
simple focusing scenarios and often suffers from performance
degradation due to inherent geometric approximations and
phase quantization errors, particularly in the near-field where
strong evanescent waves are present.

b) Simulated Annealing: SA is a metaheuristic algorithm
inspired by the annealing process in metallurgy. It explores the
solution space through stochastic state transitions, which are
controlled by a gradually decreasing “temperature” parameter.
This probabilistic search mechanism allows SA to escape local
optima. In our benchmark, SA was configured with an initial
temperature 7o = 1000 K, an adaptive geometric cooling
schedule (with a cooling rate @ = 0.95), and a Markov
chain length L = 100. A maximum of 10* iterations was
set. Conventional stochastic optimizers like SA can sometimes
demonstrate significant efficiency-intensity tradeoffs, strug-
gling to consistently achieve high-quality solutions within
practical computational limits.

¢) Genetic Algorithm: GA is an evolutionary optimiza-
tion algorithm inspired by natural selection. It evolves a
population of phase configurations through biological-inspired
operations, including selection, crossover, and mutation, iter-
atively improving the population’s fitness. For benchmarking,
our GA implementation utilized 100 generations with a muta-
tion rate (p,,) of 0.15 and a tournament selection size of 5.
For the scale of problems considered (e.g., involving more than
480 binary variables for certain configurations), GA often fails
to converge within reasonable computation times (e.g., within
a 12-h computation limit), frequently generating suboptimal
solutions with significant energy leakage.

2) Evaluation Metrics: To thoroughly evaluate the opti-
mization results, we employ a comprehensive set of metrics
that quantify both the quality of the achieved near-field focus-
ing and the computational efficiency of the algorithms.

a) Quality Metrics: These metrics assess the physical
characteristics and performance fidelity of the generated near-
field patterns.

(20)

1) Focusing Efficiency (ny.): Measures the proportion of the
electric field intensity concentrated within the designated
focal region (Ag) on the observation plane, relative to
the total input power (Pj,). It is calculated as

I, [E@PPds

P in
where E(r) is the electric field vector at position r on the
observation plane, dS is an infinitesimal area element,

e 2y
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and the integral is performed over the defined focal
area Ag.. A higher ng indicates a more effective energy
concentration.

2) Focal Spot Size: Quantifies the sharpness and resolution
of the focal spot. For a single focal point, it is typically
measured as the full width at half maximum (FWHM)
of the intensity profile along the principal axes (e.g.,
x-, y-, and z-directions) within the focal plane. FWHM
is determined by the lateral distance over which the
intensity drops to half of its peak value. A smaller
FWHM indicates a tighter and higher resolution focal
spot.

3) Multipoint Focusing Energy Uniformity: Evaluates the
balance of energy distribution among multiple focal
points. For K target focal points with individual peak
intensities Iy, I, ..., Ig, uniformity is quantified by the
standard deviation of these intensities, normalized by
their mean to provide a relative measure

std({y, I, ..., Ig)
mean(l;, b, ...,Ix)
A lower uniformity value (approaching zero) indicates a

more balanced and even energy distribution among the
target focal points.

Uniformity =

(22)

b) Efficiency metrics: These metrics evaluate the com-
putational performance and reliability of the optimization
algorithms.

1) Single-Run Time (t;): Represents the average computa-
tional time required for a single, complete execution of
an algorithm to yield a solution. This value is obtained
by averaging the measured execution time over multiple
independent runs.

2) Time-to-Target (TTT): TTT is a key metric for evaluating
the practical efficiency and reliability of optimization
algorithms. It quantifies the expected computation time
required for an algorithm to reach a predefined target
solution quality with a specified confidence level. It is
calculated as

In(1 - Py)

In(1 — Py)

where P, is the desired success probability (set to 99%
for high reliability, i.e., P; = 0.99), and P; is the success
probability of finding the target solution in a single run.
The definition of the “target solution” (i.e., the specific
quality threshold that determines Py) is based on the
particular focusing performance goals for each problem,
such as achieving a certain focusing efficiency or a
uniformity threshold. To ensure statistical significance
in estimating P; and #;, we conducted 1000 inde-
pendent experiments for each algorithm and problem
configuration.

TTT = X 1 (23)

B. Single-Point Focusing

Our first set of numerical results focuses on the fundamental
task of single-point near-field focusing. The objective is to
concentrate incident electromagnetic energy into a single,
tightly confined focal spot. Specifically, we designed a 41 x 41
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Fig. 8. Comparison of near-field focusing performance for single-point
focusing. This figure visually compares the near-field intensity distributions
at the focal plane (z = 0 m) obtained by different optimization methods.
(a) dSB result: near-field power distribution optimized by the dSB algorithm,
showing a tightly confined focus with suppressed energy leakage. (b) SA
result: near-field power distribution optimized by the SA algorithm. (c) PG
result: near-field power distribution obtained by the PG method. (d) GA result:
near-field power distribution optimized by the GA.

metasurface array (total Nejements = 1681) and aimed to achieve
a focus at the target point (0, 0.15, and 0.6 m). For the
single-point focusing case, the decay constant K is set to 0.5,
and the evolving temperature is p(f) = 0.01¢#; the detuning
frequency A is 1. The maximum number of optimization steps
is set as 5. The key dynamic parameter £, which defines the
threshold for state locking, was empirically tuned from le-8
to 1, ensuring optimal performance. Our approach involves a
parallel parameter sweep to quickly identify the best parameter
range before conducting a more detailed sweep [38].

The quantitative performance of dSB and the benchmark
methods (PG, SA, and GA) is summarized in Table II. The
resulting near-field power distributions generated by these four
methods are visually compared in Fig. 8. These distributions
were obtained from the best-performed runs after 1000 inde-
pendent experiments on a single-core Intel! Core? i7-9700
processor and coding language Python.

As quantified in Table II and visually confirmed in Fig. 8§,
the dSB algorithm demonstrates superior performance in
achieving high-quality single-point near-field focusing. For the
TTT calculation, we set the target solution as achieving a
focusing efficiency of 4.5% with a desired success probability
(Pg) of 99%. dSB achieves the highest focusing efficiency of
9.17%, outperforming all benchmark methods with a robust
“average focusing efficiency” of 8.70% over 1000 runs. Its
focal spot is tight, with FWHM of 0.035 m in Y and 0.140 m
in Z. Furthermore, dSB achieves this high performance with
a competitive single-run computation time of 25.00 s and a
remarkably low TTT of 25.00 s, indicating its high reliability
in reaching the optimal solution.

IRegistered trademark.
2Trademarked.
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TABLE I
PERFORMANCE METRICS FOR SINGLE-POINT NEAR-FIELD FOCUSING
Method ~ Best Focusing Eff. (nf., %)  Avg. Focusing Eff. (n¢., %) FWHM (Y, m) FWHM (Z, m) Comp. Time (ts,s) TTT (s)
dSB 9.17 8.70 0.035 0.140 25.00 25.00
PG 8.79 8.79 0.036 0.140 0.001 N/A
SA 4.59 2.01 0.034 0.130 30.00 5456.84
GA 2.28 1.54 0.038 0.154 43980 N/A
In comparison, the PG method, while being the fastest with Nearfield i"yozzilzges(a/;;‘:ymm e Near-ﬁealgig'?:rz;ne T
a single-run computation time of 0.001 s (as an analytical 5
solution, TTT is not applicable), achieves a slightly lower . 22
“Best Focusing Efficiency” of 8.79% and a marginally larger )s
focal spot (FWHM of 0.036 m in ¥, 0.140 m in Z). Fig. 8(c) ’ 2o
clearly shows that PG suffers from a slightly higher energy 2 L5
leakage (visible in the yellow-marked region) compared to 1 10
dSB [Fig. 8(a)]. This is attributed to PG’s inherent reliance 03
on geometric optics approximations and susceptibility to 0.1 0203 04,05 06 07 08 010203 0,05 06 0708
quantization-induced errors, which are more pronounced in Near-field in yoz plane (Adaptive Weighting) Near-field in yoz plane (PG)
the nearfield. ) : il <
Conventional stochastic optimizers, SA and GA, exhibit 10 v
significant tradeoffs and limitations for this problem. SA shows 08 0%
a “Best Focusing Efficiency” of only 4.59% and a very low g 06 B 0.6
“Average Focusing Efficiency” of 2.01%. Although it achieves o4 h 04
a tight FWHM (0.034 m in Y, 0.130 m in Z), its overall perfor- o 0

mance is significantly hampered by a high TTT of 5456.84 s,
indicating poor reliability in reaching high-quality solutions.
Fig. 8(b) visually confirms significant energy leakage. GA
performs the worst, with a “Best Focusing Efficiency” of only
2.28% and an “Average Focusing Efficiency” of 1.54%. Its
single-run computation time is extremely high (43980 s), and
it failed to reach the defined target solution reliably enough
for TTT calculation. Fig. 8(d) clearly illustrates its suboptimal
focusing with substantial energy leakage.

Our method consistently demonstrates effective focusing
with low energy leakage. This superior performance is a direct
result of the dSB algorithm’s inherent advantage in exploring
complex, high-dimensional energy landscapes and effectively
escaping local optima. As the array size increases, the degrees
of freedom of the optimization problem grow dramatically,
making conventional stochastic algorithms like SA and GAs
more susceptible to getting trapped in local optima.

In conclusion, for this fundamental single-point near-field
focusing problem, the dSB algorithm consistently demon-
strates superior efficiency and performance compared to both
analytical and conventional stochastic optimization methods,
offering a robust and reliable solution. It is noteworthy that
although our dSB method can surpass the performance of
the PG method in terms of achievable focusing quality, it
is generally less efficient than PG when considering single-
run time and average performance. Therefore, PG should be
chosen when real-time modulation is a primary requirement,
whereas dSB is the preferred choice when seeking the absolute
best optimization results.

C. Multipoint Focusing
Beyond single-point focusing, the ability to generate multi-
ple, simultaneous focal spots with desired characteristics is

0.1 02 03 04 05 0.6 0.7 0.8 0.1 02 03 04 0.5 0.6 0.7 0.8
z(m) z(m)

Fig. 9. Multipoint near-field focusing performance comparison. This figure
presents the near-field intensity distributions at the focal plane (x-axis, spec-
ified in target coordinates) for two multipoint focusing scenarios, comparing
dSB’s adaptive weighting scheme with the PG method. (a) Three-point
focusing (dSB adaptive weighting): Near-field intensity distribution for a
35 x 35 array generating three uniform focal points at (0, +0.1, and 0.2 m)
and (0, 0, and 0.2 m). (b) Three-point focusing (PG method): near-field
intensity distribution for the same three-point scenario, obtained using the PG
method. (c) Five-point focusing (dSB adaptive weighting): near-field intensity
distribution for a 35 x 35 array generating five uniform focal points at (0, 0.3,
and 0.4 m), (0, 0.15, and 0.45 m), (0, 0, and 0.5 m), (0, —0.15, and 0.45 m),
and (0, —0.3, and 0.4 m). (d) Five-point focusing (PG method): near-field
intensity distribution for the same five-point scenario, obtained using the PG
method.

crucial for advanced near-field applications like multitarget
sensing or parallel wireless power transfer. We present the
performance of our dSB optimization framework for multi-
point focusing, utilizing the adaptive weighting scheme and
the penalty method, and compares our results with those
obtained from the PG method for similar multipoint tasks.
In these scenarios, in addition to the core dSB parameters
(with Ry = 1.0, K = 0.5, A = 1.0, and p() = 0.017), the
update interval At for the adaptive weights w), is set to 5 based
on empirical analysis, which provides a stable and efficient
balance. The maximum number of optimization steps is set
to 100. Similar to the single-point case, the parameter ¢ was
tuned to achieve the best solution quality.

1) yoz Plane Targets: Our investigation includes two dis-
tinct multipoint focusing examples where targets are located
in the yoz plane, visually depicted in Fig. 9.

a) Three-point focusing [Fig. 9(a) and (b)]: We first con-
sider a 35 x 35 metasurface array tasked with generating three
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TABLE III
PERFORMANCE METRICS FOR MULTIPOINT NEAR-FIELD FOCUSING (35 X 35 METASURFACE)

Scenario Total Eff. (n¢c, %)  Uniformity Avg. FWHM (Y, m) Avg. FWHM (Z, m)
3 points (dSB Adaptive) 18.421 0.0490 0.0475 0.2185
3 points (PG) 17.792 0.0223 0.0535 0.2210
5 points (dSB Adaptive) 39.478 0.2631 0.3117 0.5871
5 points (PG) 32.682 0.1154 0.4582 0.7539

focal points with 1:1:1 energy ratios. The target coordinates are
(0, 0.1, and 0.2 m), (0, 0, and 0.2 m), and (0, —0.1, and 0.2 m).
Fig. 9(a) shows the result obtained using our dSB algorithm
with the adaptive weighting scheme, while Fig. 9(b) presents
the corresponding result from the PG method.

For this three-point focusing example, our dSB adaptive
weighting scheme achieves a total focusing efficiency of
18.421%, which is significantly higher than PG’s 17.792%
(as seen in Table III). While PG shows a numerically lower
(better) uniformity of 0.0223 compared to dSB’s 0.0490, it
shows a worse average FWHM as seen in Table III. Fur-
thermore, Fig. 9(b) critically reveals qualitative differences:
distinct energy leakage is observed in regions between the
focal spots and the array (the yellow box region) in the PG
result. And the focal spots at (0, £0.1, and 0.2 m) generated by
the PG method appear noticeably larger and less focused than
those achieved by our dSB method. This demonstrates that
despite numerical advantages in specific metrics, dSB yields
a qualitatively cleaner and more concentrated focus.

b) Five-point focusing [Fig. 9(c) and (d)]: Building on
the complexity, we then explore a 35 x 35 metasurface array
designed to generate five uniformly distributed focal points.
The target coordinates are (0, 0.3, and 0.4 m), (0, 0.15, and
0.45 m), (0, 0, and 0.5 m), (0, —0.15, and 0.45 m), and (0,
—0.3, and 0.4 m). Fig. 9(c) displays the result using our dSB
algorithm with the adaptive weighting scheme, while Fig. 9(d)
shows the PG method’s result.

For this more complex five-point focusing example, our dSB
adaptive weighting scheme achieves a total focusing efficiency
of 39.478%, which is substantially higher than PG’s 32.682%
(as seen in Table III). Similar to the three-point case, PG
exhibits numerically better uniformity (0.1154 versus dSB’s
0.2631), but suffers from the FWHM size, which means it
gains less focusing. However, Fig. 9(d) vividly illustrates the
critical qualitative drawbacks of the PG method: it exhibits
significantly higher energy leakage in the yellow box region
compared to Fig. 9(c). More critically, pronounced energy
leakage is also observed between adjacent focal points (the
red box region), which could lead to significant interference
and crosstalk in communication or sensing applications. In
contrast, dSB [Fig. 9(c)] maintains a much cleaner field
distribution with less interference, even with a numerically
high uniformity metric in this specific instance.

To more intuitively demonstrate the performance advan-
tages of our method, we further present the quantized phase
distributions of both the dSB and PG methods for the two
different multipoint focusing scenarios, as shown in Fig. 10.
It is evident that our dSB method generates a complex and
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Fig. 10. Quantized phase distributions for the two multipoint focusing
examples in (a) and (b) results for the three-point focusing scenario using
the PG and dSB methods, respectively. (c) and (d) Results for the five-point
focusing case.

irregular phase distribution [as shown in Fig. 10(b) and (d)],
which is crucial for achieving precise control over multiple
near-field targets. In contrast, the conventional PG method
simply quantizes the phase to the nearest value, resulting in a
relatively simple and linear phase distribution [as shown in
Fig. 10(a) and (c)]. This unit-by-unit approximation, when
applied across the entire metasurface, leads to significant
performance degradation in complex scenarios. This notable
difference in the phase distributions directly explains why our
method achieves higher efficiency and cleaner focal spots.

2) xoy Plane Targets: We further demonstrate further
demonstrates the versatility of our multiobjective optimization
strategies by addressing multipoint focusing in the xoy plane
(i.e., on a plane parallel to the metasurface, at a fixed z
distance). This scenario is particularly relevant for applications
like near-field display or optical manipulation. Fig. 11 visually
presents the results for several complex multipoint focusing
tasks.

a) Symmetric pattern uniform focusing [Fig. 11(a)—(c)]:
We first investigate the generation of multiple uniform focal
points on the xoy plane. Fig. 11(a) displays the result for an
eight-point focus using a 20 x 20 array using the adaptive
weighting scheme. The target coordinates are (+0.05, +0.05,
and 0.1 m), (0, £0.05, and 0.1 m), and (£0.05, 0, and 0.1 m).
Fig. 11(b) shows a four-point focusing result using the penalty
method on a 20 x 20 array, with target points at (£0.025,
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Fig. 11. Multipoint near-field focusing on the xoy plane. This figure illustrates
the performance of dSB’s multiobjective strategies for generating complex
patterns on a plane parallel to the metasurface. (a) Eight-point uniform
focusing (adaptive weighting, 20 x 20 array): near-field intensity distribution
showing uniform focusing at eight points: (0.05, £0.05, and 0.1 m), (0,
+0.05, and 0.1 m), (£0.05, 0, and 0.1 m), using the adaptive weighting
scheme. (b) Four-point uniform focusing (penalty method, 20 x20 array): near-
field intensity distribution showing uniform focusing at four points: (4-0.025,
40.025, and 0.15 m), using the penalty method. (c) Eight-point uniform
focusing (penalty method, 35 x 35 array): near-field intensity distribution for
the same eight target points as in (a), but on a larger 35 X 35 array, optimized
using the penalty method. (d) Z-shape pattern generation (adaptive weighting,
35 x 35 array): near-field intensity distribution demonstrating the generation
of a complex, asymmetric “Z-shape” pattern, achieved by pixelating the target
shape into discrete focal points and optimizing with the adaptive weighting
scheme.

40.025, and 0.15 m). Both the adaptive weighting and penalty
methods can effectively achieve uniform focusing for such
symmetric patterns. Quantitatively, the penalty method typi-
cally yields better uniformity in these scenarios.

For comparison, to demonstrate the capability for higher
resolution and more complex patterns, we consider an eight-
point focusing task [same target points as in Fig. 11(a)]
but on a larger 35 x 35 array using the penalty method.
Fig. 11(c) illustrates this result. Comparing it with Fig. 11(a),
the larger array size significantly improves the resolution,
leading to smaller and sharper focal spots. Furthermore, the
penalty method generally achieves better uniformity for these
symmetric patterns. However, a significant limitation of the
penalty method is that it primarily finds solutions for sym-
metric target patterns and exhibits a lower success probability
for more complex or asymmetric configurations.

b) Asymmetric Pattern Generation [Fig. 11(d)]: Con-
sequently, for generating asymmetric or highly intricate
near-field patterns, the adaptive weighting scheme becomes
indispensable. Fig. 11(d) showcases the generation of a com-
plex, asymmetric “Z-shape” pattern, which cannot be reliably
achieved by the penalty method. To create such a pattern, we
pixelate the target shape into discrete focal points based on
the system’s spatial resolution. The approximate resolution of
the focusing system, determining the minimum achievable spot
size, can be estimated by testing the FWHM of a typical single

9899

Near-field in yoz plane (Full-wave Simulation)

Pareto Front (3 Points) 3535 array

192 @ . 3 Points 0.30
i . . 0.25
>
5'19.0
é _ 0.20
2 £
o 188 = 0.15
E 18.6 010

0.05
18418 ° (@
0.05 0.10 0.15

0.1 02 03 04 05 0.6 0.7 0.8
Unif (Uniformity) 2(m
Near-field in yoz plane (Full-wave Simulation)
35x35 array

Pareto Front (5 Points)

x5 Points

N
S}

Eff (Efficiency)
5

v
*
x

0.28 0.30

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
Unif (Uniformity) 2(m)

Fig. 12. Multiobjective performance tradeoff and full-wave validation. This
figure illustrates the Pareto front exploration for multipoint focusing and
validates selected solutions with full-wave simulations. (a) Pareto front for
three-point focusing: scatter plot showing total efficiency versus uniformity
from 100 random dSB runs, with the top 10% performing solutions (or
specific Pareto-optimal points) highlighted. (b) HFSS simulation of selected
three-point solution: full-wave near-field intensity distribution obtained from
HFSS for a chosen solution from the Pareto front in (a). (c¢) Pareto front for
five-point focusing: similar scatter plot for the five-point focusing scenario.
(d) HFSS simulation of selected five-point solution: full-wave near-field
intensity distribution from HFSS for a chosen solution from the Pareto front
in (c).

focal spot generated by this metasurface configuration. By
setting the target points at intervals corresponding to this reso-
lution, the adaptive weighting method effectively reconstructs
the desired asymmetric pattern, demonstrating its robustness
for complex pattern generation.

D. Multiobjective Tradeoff and Full-Wave Verification

In multiobjective optimization, especially for complex meta-
surface designs, simply achieving optimal performance for
individual metrics is often insufficient. As previously analyzed
in Section III-B2 regarding weight sensitivity, multiobjective
problems inherently involve various tradeoffs, most commonly
between total focusing efficiency and the uniformity among
target points. Furthermore, practical applications may demand
specific attention to additional performance indicators. There-
fore, the ability to identify the Pareto front and select a
suitable solution based on specific problem requirements is
paramount. Our solver’s inherent parallelism and efficient
parameter tuning capabilities allow us to swiftly explore the
performance landscape and construct the Pareto front from
numerous optimization runs.

To demonstrate this, we conduct an analysis of the Pareto set
for the two yoz plane multipoint focusing examples previously
presented in Section IV-C1 (three-point and five-point focus-
ing). For each scenario, we performed 100 random parameter
tunings (e.g., varying initial conditions and parameters) and
analyzed their best-performing results.

Fig. 12(a) and (c) illustrates the Pareto fronts obtained
for the three-point and five-point focusing scenarios, respec-
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tively, showing the tradeoff between total focusing efficiency
and uniformity across the top ten best-performing examples.
Among them, the solutions marked with red circles effectively
balance competing objectives. Our ability to efficiently identify
and explore these Pareto-optimal solutions allows designers to
choose the optimal tradeoff point based on specific application
requirements.

To validate the robustness of our method and the fidelity
of the obtained solutions, the selected candidate cases from
the Pareto fronts were subjected to full-wave electromagnetic
simulations using HFSS. The resulting near-field energy dis-
tributions are presented in Fig. 12(b) for the three-point case
and Fig. 12(d) for the five-point case. There are indeed some
discrepancies between our theoretical optimization results
and the full-wave simulation results. These differences are
precisely caused by nonideal factors, such as the mutual
coupling between units and the influence of the feed network.
Nevertheless, our method consistently demonstrates effective
multipoint focusing with low energy leakage. The ability to
efficiently construct the Pareto front and select physically
validated solutions offers a powerful solution framework for
designing complex multiobjective near-field metasurfaces.

V. CONCLUSION

In conclusion, we have presented a robust quantum-inspired
optimization framework for near-field metasurface design. A
key contribution of our work is the pioneering application of
the dSB algorithm to solve complex multiobjective problems.
To tackle the inherent tradeoffs in multiobjective designs, we
introduced two novel strategies: an adaptive weighting scheme
for achieving arbitrary intensity ratios and a penalty method
for enforcing energy uniformity. This framework is not limited
to a specific unit-cell type or quantization level; instead, it
is designed to map any unit-cell’s complex response to a
binary spin representation, making it applicable to different
metasurface architectures and multibit quantization schemes.
We also rigorously validated these designs through full-wave
simulations. Compared to previous works, our method offers
unique advantages in both algorithmic efficiency and frame-
work design, ensuring scalability for large-scale problems and
providing a robust approach for finding reliable, high-quality
solutions.

Our contributions significantly advance metasurface design.
In summary, our dSB optimization framework offers a versatile
and efficient set of solutions tailored to different focusing
requirements.

1) For Single-Point Focusing Tasks: If a fast solution is
needed, the PG method should be chosen; if superior
focusing performance is desired, our dSB algorithm is
the preferred choice.

2) In Multipoint Focusing Scenarios: When generating
simple, symmetric patterns with a stringent require-
ment for energy uniformity, the penalty method proves
highly effective; whereas for more complex, asymmetric
patterns or when precise control over arbitrary energy
ratios is needed, the adaptive weighting scheme is
indispensable.
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Furthermore, our solver can output multiple optimization
results and supports selection on the Pareto front, thereby
providing designers with optimal performance tradeoffs. This
study’s core innovation lies in our pioneering exploration of
the quantum-inspired algorithm in near-field electromagnetic
problems, and we demonstrate its superior performance over
conventional stochastic optimization methods in efficiency,
focusing quality, and reliability over conventional stochastic
optimization methods. Our comprehensive weight sensitivity
analysis provides a versatile framework for navigating com-
plex performance tradeoffs. The scalability analysis confirms
a favorable polynomial complexity of O(stpins) across all
scenarios, proving the framework’s practicality and enabling
the construction and selection of physically validated solutions
from the Pareto front.

Despite the power of the proposed dSB optimization frame-
work, it does have certain limitations and tradeoffs. Compared
to analytical methods, dSB is an iterative algorithm that
requires more computation time to find the optimal solution.
This creates a clear tradeoff between computational efficiency
and final performance. Furthermore, the Green’s function
model used for optimization is a simplification of the real
electromagnetic environment, which may limit the theoretical
optimality of the solutions. Looking forward, our research will
explore pushing the boundaries of computational efficiency
through massive GPU acceleration and parallel computing
strategies. We also aim to address model-simulation discrep-
ancies by incorporating more detailed coupling effects and
nonideal element characteristics into the optimization model,
alongside experimental validation of these complex near-field
designs. Further expansion of the framework’s capabilities
to dynamically reconfigurable metasurfaces and even more
sophisticated arbitrary field shaping will be pursued.
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