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Abstract—This research presents a 3-D unconditionally sta-
ble multisymplectic finite-difference time-domain (MS-FDTD)
method, marking a significant advance in computational elec-
tromagnetics. For the first time, the locally one-dimensional
(LOD)-FDTD method is applied to the multisymplectic Preissman
scheme of Maxwell’s equations. A new grid arrangement for
electric and magnetic fields is designed to meet MS-FDTD
discretization requirements, differing fundamentally from the
traditional Yee grid. We have derived the detailed equations
and techniques for implementing various boundary conditions
in the proposed method. An in-depth analysis of numerical
dispersion has been conducted, demonstrating the method’s
superior characteristics in this regard compared to traditional
finite-difference time-domain (FDTD) methods. Additionally, the
unconditional stability of our method has been thoroughly con-
firmed. Comprehensive simulations, including cavity resonances,
bioelectromagnetic problems, and on-chip applications, validate
its accuracy, efficiency, and long-term stability. This work inte-
grates multisymplectic theory, originating from mathematics, into
computational electromagnetics, providing a novel framework for
numerical algorithms.

Index Terms—TFinite difference time domain (FDTD), multi-
symplectic, numerical dispersion, stability analysis.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method is
one of the most widely used algorithms in computa-
tional electromagnetics, valued for its simplicity and high
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computational efficiency. It is particularly suited for solving
transient electromagnetic problems and modeling complex,
inhomogeneous structures within the computational domain.
Applications include electromagnetic wave propagation [1],
scattering analysis [2], antenna design, and photonic device
simulation [3].

Despite these advantages, the FDTD method has signif-
icant limitations that affect its accuracy and stability. Key
challenges include numerical instability, numerical dispersion,
and cumulative error in long-duration simulations, as well
as restrictions on computational accuracy. Stability requires
adherence to the Courant-Friedrichs—Lewy (CFL) condition,
which imposes strict limits on the time step relative to spatial
resolution. High-resolution problems often demand extremely
small time steps, increasing memory and computational costs.
To address this, several advanced FDTD techniques with
unconditional and conditionally stable properties have been
developed to alleviate the CFL constraint [4]. These include
the locally one-dimensional FDTD (LOD-FDTD) scheme [5],
[6], [7], [8], the alternating direction implicit FDTD (ADI-
FDTD) scheme [9], [10], [11], the hybrid implicit—explicit
FDTD (HIE-FDTD) scheme [12], [13], [14], [15], [16], and
the weakly conditionally stable FDTD (WCS-FDTD) method
[17], [18]. However, the tradeoff for obtaining more relaxed
stability conditions with the above methods is a reduction in
numerical dispersion accuracy. As a result, researchers have
proposed the higher order FDTD algorithm [19], [20] and the
artificial anisotropic FDTD algorithm [21], [22] to improve
numerical accuracy.

However, these methods still cannot address the long-
term stability issue. In the early 1980s, Feng [23] and Ruth
[24] independently introduced the symplectic algorithm, a
numerical integration method highly effective for Hamiltonian
systems due to its superior numerical prediction and track-
ing capabilities. It has broad applications across scientific,
technical, and engineering fields. The structure-preserving
nature of the symplectic algorithm has become a cornerstone
in modern computational mathematics, driving research in
scientific computing. The source-free Maxwell’s equations
with constant scalar parameters possess a symplectic structure,
enabling compatibility with symplectic algorithms. Combined
with the FDTD method, they form the symplectic FDTD
(S-FDTD) algorithm [25], [26], [27], [28], [29], which
provides significant advantages over standard methods in
terms of numerical stability and long-term computational
performance.
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Maxwell’s equations also exhibit a multisymplectic struc-
ture, an extension of the symplectic formulation for Hamil-
tonian systems, as proposed by Bridges and Reich [30]
and Marsden et al. [31]. The multisymplectic scheme dif-
fers from the symplectic scheme by adhering not only to
global energy conservation but also to local conservation
laws, known as multisymplectic conservation laws (MSCLs)
[32]. MSCL ensures that the infinite-dimensional Hamiltonian
system follows both a local energy conservation law and
a momentum conservation law [33], maintaining the sym-
plectic structure in both space and time. The benefits of
the multisymplectic scheme have been successfully demon-
strated in numerous equations, including the Korteweg—de
Vries equation [34], the Kadomtsev—Petviashvili equation
[35], the Zakharov—Kuznetsov equation [36], and the nonlinear
Schrodinger equation [37].

Previous research has primarily been dedicated to the
mathematical analysis and theoretical exploration of various
multisymplectic schemes for Maxwell’s equations. Notable
among these are the multisymplectic Preissman scheme, the
multisymplectic Euler-box scheme [38], the multisymplectic
wavelet collocation scheme [39], and splitting multisymplectic
integrators [40]. Mathematical analyses, including numer-
ical dispersion studies, have verified that these schemes
are significantly superior to other methods regarding long-
term computation and numerical stability [38], [39], [40],
[41], [42]. For the numerical example, the Preissman and
Euler-box schemes were applied to 2-D periodic boundary
conditions, while the splitting multisymplectic integrator used
symplectic Runge—Kutta methods for discretization, with per-
fect electric conductor (PEC) boundary conditions. However,
these schemes face challenges with discontinuous boundary
conditions.

To the best of the author’s knowledge, existing studies
primarily provide 2-D numerical examples, and the setting
of structural and material parameters is devoid of practi-
cal physical significance and consists of unitless numerical
values. This approach limits the ability of these models
to accurately reflect real-world physical conditions. At the
same time, comprehensive physical boundary conditions and
detailed 3-D electromagnetic field mesh distributions have
not been researched. Overall, no prior literature has specif-
ically addressed the application of multisymplectic schemes
in computational electromagnetics to simulate practical 3-D
engineering problems. Thus, bridging the gap between
mathematical theory and numerical algorithms based on mul-
tisymplectic schemes in electromagnetics is essential for
advancing realistic applications.

This article introduces, for the first time, a multisymplectic
FDTD (MS-FDTD) method for solving Maxwell’s equations.
The main innovations of this article are summarized as follows.

1) We employ the LOD method to discretize the multi-
symplectic Preissman scheme for Maxwell’s equations,
resulting in the LOD multisymplectic Preissman scheme,
which achieves unconditional stability. Using the sym-
plectic midpoint scheme in both the time and spatial
directions, we derive the 3-D implicit iterative equations
for electromagnetic fields, ensuring the stability and
accuracy of numerical solutions.

2) Numerical stability analyses based on the Fourier
method are conducted, confirming the unconditional sta-
bility of the proposed MS-FDTD method. Additionally,
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numerical dispersion analyses show that the numerical
error of the proposed method is superior to that of the
conventional FDTD method.

3) A novel grid configuration for the magnetic and electric
fields is developed to meet the discretization require-
ments of the MS-FDTD Preissman method, differing
entirely from the traditional Yee grid used in FDTD
methods.

4) Given the distinct grid structure, iterative methods, and
matrix-solving techniques of the MS-FDTD method, we
propose specific boundary techniques, including PEC,
periodic boundary, and excitation source techniques.

5) Several numerical examples are provided, ranging from
one to 3-D cases, involving resonant cavities, bio-
electromagnetic applications, and onboard chip. These
examples demonstrate the accuracy, efficiency, and sta-
bility of the proposed MS-FDTD method compared to
the conventional FDTD approach.

The organization of this article is as follows. In Section II,
we derive the complete formulation of the MS-FDTD method
and utilize a splitting method to decompose it, obtaining
iterative formulas suitable for straightforward computation.
Section III conducts stability analyses of both the nonsplit and
split forms of the MS-FDTD method, deriving their dispersion
relations. Section IV presents numerical examples in three
dimensions to validate the performance of the proposed
MS-FDTD method. Finally, Section V provides the
conclusions.

II. FORMULATION

The set of Maxwell’s equations in each isotropic, homoge-
neous, nondissipative medium is

OH
VXE=-u—= 1
x o (1
JE
VxH=e— 2
X 86t 2)
V.-B=0 3)
V-E=0. 4)

The Hamiltonian equations for a multisymplectic scheme
with m spatial dimensions are

MZ+KiZ + K2+ KaZs = VS @) (5)
where
0 0 0 0 0 0
00 0 0 0 0
0 0 0 0 -I 0
M=1o 0 0 0 0 -1
00 I 0 0 0
000 0 1 0 0
- ; )
0 0 0 3G 0 0
!
0 0 3G 0 0 0
|
K=| 0 30 0 0 0 0
1
-3¢0 0 0 0 0
0 0 0 0 0 0
Lo 0 0 0 0 0]
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_ | _
0 0 0 5C2 0 0
0 0 %CZ 0 0 0
1
K;=| 0 —§C2 0 0 0 0
1
§C2 0 0 0 0 0
0 0 0 0 0 0
L 0 0 0 0 0 0]
- | _
0 0 0 zC3 0 0
1
0 0 —503 0O 0 0
K; = 0 %C3 0 0 0 0
1
—503 0 0 0O 0 0
0 0 0 0O 0 0
| 0 0 0 0 0 0]
[0 0 0] 0 0 1
Ci=|0 0 -1, C=[0 0 0
0 1 0 -1 0 0
[0 -1 0]
CG=|1 0 o0
0 0 0

in which I is the identity element belonging to R**3. M
and K are antisymmetric matrices and S(z) is a smoothing
function that has been made a Hamiltonian or energy general-
ization. Bridges and Reich defined the numerical scheme that
maintains the discrete MSCL as the multisymplectic scheme.
Maintaining the discrete MSCL means that the corresponding
multisymplectic scheme satisfies local energy conservation
and local momentum conservation. Discretize (5) using the
symplectic midpoint scheme to obtain the Preissman scheme

n+1
v (z : )
3 i+t
n+1 —_zn
-M i+3. 5 kts i L kg
At
n-‘r% _ n+%
(AR AN ij+3 k41
+K1 2 2 2 2
Ax
n+% n+%
0 V=2
i+ 1+ L+ i+1. k43
+ K,
Ay
n+% _ n+%
N N S B SR WA
+K3 2 2 2 2 . (6)
Az

The Preissman scheme in (6) is multisymplectic and satisfies
the discrete MSCL. Substitution of Maxwell’s system of equa-
tions into (6) yields the multisymplectic Preissman scheme of
Maxwell’s system of equations

At

n+1 n+1 n+1
Exv_*_l 1 1 T 5. 6)7HZ. 1,1 _51Hy. 1,1

i+L+i+t 2e i+ 5.kt 4 i+ 5.+ 5k

=E" —&—E o H” - 0. H" (7

Tl lerd o 28 U7V G bt T Vil lk

n+1
qu 1 1)
Lj+ 5 k+ 3

i _ At ntl _5
Vil il l XL Ll x
i+yitiers 2e i+ 1+ tk

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 73, NO. 12, DECEMBER 2025

At
=E — | 6.H: -0, H! 8
Yir Lt batd + 2¢e ( SN be T B e ) ®)

At
n+1 n+1
E; Lo T e o.H
il 2e
At
Hn+1 I (5 E"+1 —6 EnJrl
Tiphirderd o 2u \ Y Y barke ) G ik
1 (10)
2
At
n+1 = n+1 _ n+1
H.\'»L»L,l_ 6)‘E2»-1 1 6ZEX-1-l
hitykty 2 it g k) iyt gk
At

_ n+1
Viirdard T N L
At
At
:H)r’l 11 1+_ 5XE? 1 1_63E2 11 (11)
Hhitiery o 2u ij+d kg i+ 4tk
=H! + — | 6,E% —6,.E .(12
Gpbarhary 0 2u \ YT N e} Vi Ll 12)

At
_ n =t n _ n
- EZ[+| 1l X0y 1 6YHX. 1ol (9)
Lttt 2¢ L i+ 3kt
— n — n _ 6 En
T bitbetd o 2u ( Vil be YT S ks
At
! = —(eEr  —sEMT
Sbfatbats 2u i+ 5k} Vi fath
The symplectic midpoint-discrete operator is as follows:

02,1 = Ait (7! -7,y) (13)
6.2 = (2 -2 (14)
7 =@z (s)
2 % (28 + 27 (16)
Z,-"ff = i Z +z+zi, 2zt an

Substitution of the operator into multisymplectic Preissman
scheme of Maxwell’s equations, the complete scheme, can be
shown in the following equations:

n+1 n+1 n+1 n+1
(Exi,j+1,k+1 + EXi.f,k+1 + EX;‘.H-IJ( + EXi.f,k)
Y gl gt gt g
sAy Zi,j+1Lk+1 Zi,j+1.k i, jkA41 Zijk
At
n+1 n+1  _ g+l _ gn+l
+ «9AZ (H\'i.j+1,k+l + Hyi,j,k+l I_I.\'x.j+l,k HYi,j,k) (18)
— En _|_ En _|_ En _|_ En
Xij+1k+1 Xijk+1 Xij+1k Xijk
At
b (M HHE L~ HE L~ )
SAy ij+1k+1 Zij+1k i, jk+1 Zi,jk
At
n n n n
& AZ (H}'i.f+],k+] + Hyi,j,k+l H)'i.H—],k Hyl',j,k)
n+1 n+1 n+1 n+1
(E)’H»I./JH»I + E}’i,/‘,k+l + Eyf+1./.k + Ey[.j.k )
M H gt gl gt
SAZ Xid1,jk+1 Xi,j k41 Xi41,jk Xi,jk
+ At ( n+1 + n+1  _ pgn+l n+1)
Zi41,j,k+1 Zit1,jk Zi,jk+1 Zi,jk
eAx (19)
_ n n n n
- (E}'i+l,_j‘k+l + E,Vi,j,k+1 + EYi+|,_,',k + EYi,j,k)
At
n n n n
+ Az (Hxi+l,j,k+l + Hxi‘/,kJrl - Hxi+l,j,k - HX:.j,k)
At
n n n n
- eAx (H21+1./\/<+| + HZi+l.j.k - HZ[./.A'+1 - HZ;./.k)
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n+1 n+1 n+1 n+1
(EZi+],/'+],k + Eq jH1Lk + EZ i41,j.k + EZi,/‘.k )
_ At H11+l + Hn+1 H11+l _ Hn+l
SAX Yi41,j+1k Yit1,jk Yij+1k Yijk
At .
—+1 n+1 n+1 _ pn+l
+ SA (Hxi+l,j+l,k + HX:‘.H-],A- Xit-1,jk Hxi,j,k)
n n n n (20)
(Ezz+1j+1k + EZ jFLk + EZ+1jk + EZi,/’.k)
At
n n n n
+ eAx (Hy;+1.j+1k + HM+1/k My Hy:‘,j,k)
At
n n n n
- sAy ( Xid1,j4+ 1k + HXI jFLE Hx,+1,k Hxi,j,k)
n+1 n+1 n+1 n+1
(H’61,+1 k+1 + Hx, k41 + HXI,-HA + H-xx ik )
At o,
_ —+1 n+1 n+1 _ pn+l
u AZ (E,Vi,,'+1.k+l + Eyi,_f,k+1 Vij4+1k EYL_/,A')
At
—+1 n+1 _ pn+l  _ pn+l
+ /.tAy (Ezi\/+l,k+l + EZ: J+1k EZ: k1 EZi._/,k ) )1
Hn + Hl’l + Hn + Hn ( )
Xij+1k+1 Xijk+1 Xij41k Xijk
At
n n n n
+ ,UAZ (Eyi.f+1,k+1 + EVz/k+] - Ey, j+1k - E}'i,j,k)
At n n n n
- ,uAy (EZL‘H—I,k-ﬁ—] + EZi,j+|,k - EZi,j,k+1 - EZi,j,k)
n—+1 n+1 n+1 n—+1
(Hy:+l/k+l + H)x]k+l + H)’,+1 jok + Hy,‘./.k )
_ A (Et’,“, +EMT -t - E”,*,l)
,qu Zid1,jk41 Zid1,jk Zijk+1 Zijk
At n
+1 n—+1 _ n+l n+1
+ #AZ (Exi+1.j.k+1 + Exi.j.k+1 Exz+1 ik EXi,j,k) ”
— Hn + Hn + H}'l + Hn ( )
Yit1,jk+1 Yijk+1 Yit1,jk Yijik
At n n n n
+ ’qu (EZH»I,j,/H»l + EZi+l.j.k - EZi,j,/H»l - EZi,/.k)
At n n n n
MAZ ( Xit1,jk+1 + Exi,j,Hl - EXi+1./,k - EXLj,k)
n+1 n+1 n+l n+1
(H2i+1.j+1k +HZ; J+ 1Lk +H +HZ;;1{>
At
_ —+1 n+1 _ pn+l  _ pn+l
,uAy <E1i+1,_f+11< + EZ: JH1k E7:+Iﬂ< Ez,-,_,-,k>
At /o
—+1 n+1 n+1 _ pn+l
+ u Ax (E}’i+l,;+1.k + Eyi+|,j,k Yij+1k E)’z,j.k) 23
= (M, T HL L P H T HE >
- Zit1,j+1k u,+1 k Zit1,jk i, jik
At n n n n
+ ,uA (EZi+1,j+1,k + EZi,j+]k EZI+] ik EZi,j,k)
At n n n n
- ,UA)C (Ey,+|,+1k + Ey,+1 Jik E),,+11< - E)’i,j,k) °

It can be observed that the aforementioned multisymplectic
Preissman scheme is implicit, and the number of grid nodes
is required to iterative E, at the n 4+ 1 time step. To resolve
the aforementioned system of equations, one may consider
the multisymplectic Preissman scheme as a system of linear
equations, arrange the pertinent variables, and utilize the
coeflicient matrix of the system of linear equations to solve
them sequentially. However, the coefficient matrix in question
is computationally extensive, requires a significant amount of
memory, and is slow to solve. For instance, with 100 grids in
each of the x-, y-, and z-directions, the matrix size balloons
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to 6 million x6 million, leading to highly inefficient compu-
tations. This article proposes a simpler method to convert the
3-D Maxwell’s equations into a form suitable for computa-
tion, reducing both computational memory requirements and
enabling parallel processing.

Subsequently, the multisymplectic Hamiltonian equation
was decomposed into a series of LOD MS-FDTD equations,
demonstrating that the split LOD Hamiltonian equation contin-
ues to satisfy the MSCL and retains the characteristics of the
original Hamiltonian equation, thereby confirming its viability.
The equations can be presented as follows:

%MZ,—i—Kka =VSi(z), k=1,2,...,

m 24)

where the function S4(z) can represent any splitting of S(z),
provided that it satisfies the MSCL criterion.

The multisymplectic Hamiltonian system can be decom-
posed into three subsystems of the LOD scheme, allowing for
the LOD multisymplectic Preissman scheme for Maxwell’s
system to be expressed as follows:

s (Bl ) =20 (H“f e

(25)
ﬁ (HZ L ) - "5 B, +ELD) Q)
f/z (Ezizk —E ) 25 )",ff + H;’Mk) @7)
e (H;i;k i} ) = oc(E,+ELY)08)
f/z (E++ B ) = é@ (H ak +HED)29)
f/z (H"fi H ) = iéy FEE) 60
v (E"fiz "ff ) = Lo, (v m) oD
I (H"jf P ) oo (e L) o
f/z (E”,ffp "fklz) —25 (i +m7h) 63
v (E“ +) = o (it +HIE) G
f/z (H"ITLZ +) = o (B EL) 69
el (Rt B CURE ) ED

Substituting the difference operator into the above equation
gives the final Maxwell’s equations in the LOD multisymplec-
tic Preissman scheme

+1 +1 M +1 +1
o () Bl + o OB +— (HEEL, - HITY)
E0AX
At " n
=& (gx) EV1+1 " +&(DE ) gk E (H2i+1,j.1< - HZi,j,k)
+ + +3
Mr (gx) H".+|,k +,ur (I)Hn,,kz + _A ( :lHrlz//s - E;'v/'v"z)
At
=y (8x) H. Z+1,1< +u (D H, lek B HoAx (E)r'liﬂ‘,;k - E;li,/’,k)

(37)
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+ 1 + 1 At + 1 + 1
£r (@) ExLyy + e DBy — —— (H,L Lo Hyl )

At
=é&r (gX) E?H»]./lk +é& (l) E;li./.k + ST)C (H}n’/+1./.k - H;w)
+1 +3 A ot +1
Hr(8x) Hi/'l'i+12,_f,k + pr (D) H;lf,_;,k“ - /E (EZH?M - EZ,_f,kz)
At
o OH (E2,,, - E2,)

(38)

=& (gx) H)n

i41,jk

n+t1 nt At n n
&r (gy) Exiu Ter(DEy; - Ay (Hzi::rll,k - HZJQ)
n n At n+j n+j
=& (%) Eyp TerDE, + £Ay (HZLHZM - Hzi,j,kz)

At “r% +1
Hr (g)’) H?n—::-llk + (D) HZn,-:_kl - ,LlTy (Eii.jJr_l.k - Ezz:j,kz)

n+4 n+1i At
= Hr (gY) H,n+ur (DH 2+ UAy (Ezi.m.k - Ez‘i,_;,k)
(39

nJr%
Xi,j+1,k

At
n+1 n+1
Er (g.V) EZij’;l,k + &r (l) EZi,J;:k + ETAy (

ntd nty At
=é&r (gy) E b ter(DE;;” — @ (Hgi,ﬁlk - H;lhzlk)
n+%

n+1 At
Hr (gy) Hx;,]url,k + Uy 0] Hx,;,,kz + /Ky (EZ-:_-:lk - EZ—:_:)

n n At "JF% "+%
= Hr (gy) Hy oy T DH, —~ HT)’ (Ezi,j+_1.k - Ezu:ku)
(40)

_ Hn+%)

Xi,jk

+1
&r (gz) E:lfi.j,kJrl

Yijk+1 Yijk

At
+& () Eﬁf} + A (H’”rl _ H"H)

1
n+3

1
n+3
HVi,j,k+1 - H,Vi,j,k )

ez

n+1  _ pn+l
Exi. k41 Exi. ok )

ntl ntl At
=&, (g) E;i.j.k2+l +e&- () E;i.j,kz (

At
+1 +1
(@) Hy L (D HY L+ Az (

+1 + M +1 +1
=u(g2) H}r’li,_/,kll + pr (D) H;[,j.kz - ,UTAZ (Ezi._/.kil - Ezi.j,kz)
41)
n+1 n+1 At n+1 n+1
o (g BN\ + o D EL! + 25 (L — HIF)
+1 +1 At +1 +1
=& (gz) E;la,j,szrl + & (l) E;'li.j.kz - E_AZ ( :cli.j.k2+1 - H)r(l,;,:k2>
At
+1 +1 +1 +1
Hr (82) H;i._wl D H’r‘lﬂﬁk B ,LtTZ (E’YZ./.HI N E;lf,/-k)

+ 1 + 1 At + 1 + 1
= My (gz) H;li‘j,kz«l»l + M (l) H;:i,j,kz + — (E;’li,j,karl - E;li,/’,k2>

pAZ
(42)

with g, = (i + 1,7,k),8 = (,j+ 1,kg, = (,j,k+ 1), =
@ j.k),m,=(G-1,j,k),m,=(,j—1,k), and m; = (i, j,k—1).

Based on the aforementioned equation, it is apparent that the
split MS-FDTD equations are straightforward to implement
programmatically, leading to considerable reductions in com-
putational workload and memory usage. However, due to the
implicit nature of these equations, additional transformations
are required. For instance, by substituting the electric field
components from (37) into its magnetic field components, a
tridiagonal matrix equation for the magnetic field components
can be derived. This can then be solved in conjunction with
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the bidiagonal matrix equation for the electric field

1 1 1
LiHL 2 + LHL 4 L H

Zij4 1k

= RlHZﬂjfl.k + RZHZ:M + R3H;,_;+1,k 43)
+ R4Ezi,j+].k = Rs Ezi,j—].k
n+1 n+3 At n+3i nt1
Er (gy) EXL/'J;],I{ + & (l) Exi.f.k“ + m (Hzr,H»zl,k - HZi./.kZ)
At
=é&r (gY) chliwrl,k +& () E;i./’.k - soAx (HZ',HM - HZ:/.k)
(44)
where
A%t
Ly =& (my) u, (my) — ———
1 ( >)'“ ( )) ooy
2t
Ly =2&, (D, () +
? a gofoA%y
A%t
Ly = Er v ) Mr - 5
3 (g)),u (gy) SofloA2y
A%t
Ry = r r y —
1=8& (my):“ (m>) + SoptoA2y
2A%
Ry =2&, (D, () -
£ofoA%y
At
R; = r r 5
3= € (my)/‘ (mv) + oloAZy
At
Ry = 2¢, 8
(&) HoAy
At At
Rs =2g.(my) ——, Res =2u, (g
( )) ,UoAy ( }) SOAy
At
R; =2u, (m, .
7 H (m)) SOA}’

Furthermore, by substituting the magnetic field components
into the electric field components, a tridiagonal matrix equa-
tion for the electric field components can be derived. This
can then be solved in conjunction with the bidiagonal matrix
equation for the magnetic field. The split MS-FDTD equations
in two dimensions necessitate specific treatment, outlined by
the following formulas:

1 1 n+i
LiEL? + LEL + LE
= RlE?H,/ + RZEZ'./ + RSE;IH»I./' + R6H;’l+l.j - R7H;’1/71,/
(45)
( )Hn+1 + (l) Hn+l _ At (En _ En
Hr (8 Yit1,j Hr Yij NOAx Zig1,j Zij
At +% +L
= ur(gx) H;Z,.Jr,,,- + - (D) H;li’j + M (EQH»]T/' - EZ/ 2)
(46)
1 1 1
(LiERH! + LERF T+ LaEnt) )
+1 +1 +1
= RIEZ;/-,lz + RZEZ,/ P+ R3E;L/+21 - R4H1rrl,;j+1 + R5H§,,j71
47)
o (g) B 4 e (0 E 4 B (B
r\8y Xijg1 r Xij /lAy i, j+1 Zij
At
_ +1 +1
=& (gy) H;l,._Hl + K (gy) H)’cl,;/- - /Ky (Ez.j+l - EZ',, ) :
(48)
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ITI. NUMERICAL STABILITY AND DISPERSION ANALYSIS
A. Numerical Stability Analysis

Section III utilize the Fourier method to analyze the stability
of the algorithm proposed in this article. The matrix in the
spatial spectral domain between the nth time step and the next
(n+ 1)th time step is rewritten using the plane-wave solution
of Maxwell’s system of equations

(J/n-’_l — Al,bn — A_lBll/n — C_lDl,bn- (49)

The stability analysis of the MS-FDTD scheme is initially
performed by matrixing all the coefficients in (7)—(12) and then
substituting the plane-wave solution of Maxwell’s system of
equations into the matrix to obtain the matrices, as shown in
the equation at the bottom of the page.

The eigenvalues of A are solved as

A=A =1
-14jV4
/lgz/u:_w
1+a
a—1-jVda
As =g = ——m8M——
5 6 T a

where a = (wi+w%+wf)/(sy), wy = csin(k Ax/2)At/Ax, w, =
csin(kyAy/Z)At/Ay, and w, = csin(k,Az/2)At/Az.
Therefore, we can conclude that the values of all eigenvalues
are equal to 1, that is,
1] = 1.

Therefore, the scheme of the MS-FDTD method is proved
to be unconditionally stable. The unconditional stability of
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the MS-FDTD method can also be verified in the subsequent
numerical examples.

In this article, the LOD of the MS-FDTD method is
employed, necessitating additional stability analysis. Given
that (37)—(42) are all locally 1-D schemes, we initially analyze
the stability of the 1-D problems, utilizing the scheme outlined
in (37) as a representative example. Initially, the coefficient
matrix is derived in a manner similar to (7)—(12). Subse-
quently, by substituting the plane-wave solution of Maxwell’s
equations, the following coefficient matrix is obtained:

At 0 | At 0
C=| A g 2816)5 . D= At 2e Ox
24 0x 2u 0x

Upon solving for the eigenvalues, the following result is
obtained:

/l__b—1+j\/@
' 1+b

b—1-jVab

H=-—— T
1+b

where b = wi /(ew) and w, = cAtsin(k,Ax/2)/Ax.

It can be demonstrated that for a given case, the modulus of
the eigenvalues of matrix A is identically equal to 1, thereby
proving the unconditional stability of (37). Similarly, the char-
acteristic roots for (38)—(42) are identical. This indicates that
all schemes from (37) to (42) exhibit unconditional stability at
each substep, thereby confirming that the MS-FDTD method
is both nondissipative and unconditionally stable.

1 0 0
0 1 0
0 0 1
S Y Y
2u 0z 2u dy
At 0 0 Ao
2u 0z 2u Ox
Y
| 2uox 24 0x
1 0 0
0 1 0
0 0 1
S Y Y
2u 0z 2u dy
YY)
2u 0z 2u Ox
At 0 A1 o 0
| 2udx 21 Ox

o MO M-
2¢e 0z 2¢ Oy
At o 0 At 0
2e 0z 2¢e 0x
Mo mo
2¢e dy 2¢ Ox
1 0 0
0 1 0
0 0 1
0 At o At d T
2¢ 0z 2¢e dy
Mo o
2¢e 0z 2¢e 0x
At 0 At 0
2¢ dy 2¢e 0x
1 0 0
0 1 0
0 0 1
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Fig. 1. Dispersion relations of the ADI-FDTD method, the FDTD method,
and the MS-FDTD method at different frequencies. (a) FDTD method,
(b) ADI-FDTD method, (¢) MS-FDTD method, and (d) exact solution.

B. Numerical Dispersion Relation Analysis

The following equation represents the 3-D numerical dis-
persion relation of the MS-FDTD method:

2 2 kyAy
(tan “’TA’) ~ (tan(kxzm)) N tan (T)

cAt Ax Ay

(50)

In the following analysis, to examine the dispersion relations
at different frequencies, Fig. 1 presents the dispersion relations
for the MS-FDTD scheme, the FDTD method, and the ADI-
FDTD method. It is important to note that the dispersion
relation remains unchanged after applying the LOD splitting
technique. This is because each substep in the splitting (LOD)
MS-FDTD scheme preserves the same numerical dispersion
characteristics as the original unsplit scheme, and the entire
decomposition process does not alter the underlying dispersion
relation. All three methods utilize identical uniform cells
(Ax = Ay = Az = 0.1 m) and adopt the same time step
(At = 1.667¢710 ).

As illustrated in Fig. 1, the dispersion relation of the
MS-FDTD method is significantly better than that of the
FDTD method. To visually highlight their distinctions, this
study employs contour plots of dispersion relations using
k, and k, as coordinates at a given frequency. More-
over, the contour figures projected onto the (k., k;)-plane
and (k,, k;)-plane are omitted, as they are identical to
those of the (ky, k,)-plane due to the symmetric prop-
erties of the numerical dispersion relation. As illustrated
in Fig. 2, the numerical contours are almost circular for
small values of k, while the dispersion performance of
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both the FDTD and ADI-FDTD methods exhibits distortion
in the edge regions and high-frequency areas, whereas the
MS-FDTD method demonstrates superior dispersion per-
formance. This improved dispersion accuracy can be par-
tially attributed to the mathematical similarity between the
MS-FDTD and higher order FDTD schemes, albeit at the
expense of reduced computational efficiency.

IV. NUMERICAL RESULTS

In this section, we first present the new version of the grid
distribution for the electric and magnetic field in Maxwell’s
equations based on the MS-FDTD scheme. Subsequently,
several numerical examples are simulated and the results
of the proposed MS-FDTD method are compared with the
conventional FDTD method. An important condition used
in numerical arithmetic is CFL number (i.e., CFLN =
At/Atcrr), where Atcpy is the maximum stability limit of the
FDTD method. The computer configuration is an Intel Core
i7-13700K CPU (3.40 GHz) and 64-GB RAM (DDR4
3600 MHz).

A. Grid Point Distribution

The grid configurations of the MS-FDTD method differ
significantly from those of the Yee schemes for the FDTD
method. In the Yee scheme, the magnetic field components
and electric field components are staggered, whereas the
MS-FDTD scheme places magnetic and electric fields at the
same grid point. For instance, considering Ez;jx, EZijt+1k,
EzZijxy1, and Ez; j 1,41 as a set of Ez components (similarly
for Hx and Hy), the update of the £z component at the (n+1)th
time step requires the values of Hx and Hy from the (n+ 1)th
time step, in addition to the values of Ez, Hx, and Hy from
the nth time step. Figs. 3 and 4 depict the specific spatial
distributions. In these figures, Hx and Hy at the (n+ 1)th time
step are indicated in red, Ez and Ey at the (n + 1)th time
step are indicated in yellow, Hx and Hy at the nth time step
are indicated in blue, and Ez and Ey at the nth time step are
indicated in green.

B. Periodic Boundary Conditions

Based on the grid distribution outlined above, we devel-
oped PEC and periodic boundary conditions suitable for the
MS-FDTD scheme. The PEC boundary is similar to that
in traditional FDTD, so it will not be elaborated on here;
instead, the focus will be on the periodic boundary. In the
MS-FDTD scheme, decomposed by the LOD method, calcu-
lating a specific electric or magnetic field component requires
only considering the component in one direction. To imple-
ment a periodic boundary in the x-direction, it is sufficient to
handle the electric field components in (37) and (38) for this
direction. For instance, in (38), Ez; jx and Ez j; are treated
as one group, while Ezg j; and Ezg j; are treated as another
group. As shown in Fig. 5, by setting periodic boundaries at
x =2 and x = S, the following relationships can be obtained:

Ez(1,j,k) = Ez(S, j, k)
Ez(S +1,j,k)=Ez(2,j,k).

When solving the iterative formula with the electric field
coefficient as a tridiagonal matrix and the magnetic field
coefficient as a bidiagonal matrix, with periodic boundary
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Fig. 2. Dispersion relations of the ADI-FDTD method, the FDTD method, and the MS-FDTD method at a specific frequency. (a) FDTD method, (b) ADI-
FDTD method, (c) MS-FDTD method, and (d) exact solution.
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X

Fig. 4. Hx at time step n + 1, with the illustrated related magnetic field
components and electric field components.
Fig. 3. Ez at time step n + 1 with the illustrated related electric field

components and magnetic field components. by C1
a b o az
conditions enforced between x = 2 and x = S, the tridiagonal - L . .
matrix requires the following special treatment: U] ] .
as—1 bs_1 Cs—1
by ¢ Cs as b
a b o
L] [ ] [
. . . C. One-Dimensional Pulse Propagation
ag1 by s The same Gaussian pulse is defined by E(t) = EOxexp[—[(t—
s bs 10)/7]12] with 7 = 1.0e™® s is used as the excitation source
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Fig. 5. Tllustration of periodic boundary conditions at x = 2 and x = S applied
in the x-direction.
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Fig. 6. Comparison of the time-domain waveforms for Gaussian pulse
between the ADI-FDTD method, the MS-FDTD method, and the FDTD
method.

in simulations based on both the ADI-FDTD method, the
MS-FDTD method, and the standard FDTD method. The
spatial increment is set as 0.1 m, with a time step of 3.33¢7!% s
(CFLN = 1). When 7, is defined to 2.5¢™® s, a minor,
abrupt change in the waveform will be observed at the initial
amplitude of the Gaussian pulse.

As illustrated in Fig. 6, after propagating for a certain dis-
tance, the waveform produced by the FDTD scheme exhibits
significant jitter. This jitter includes small amplitude fluctu-
ations throughout the entire waveform and distinct periodic
oscillations between the two waveforms. The ADI-FDTD
method shows noticeable improvement in reducing jitter com-
pared to the FDTD method; however, it still suffers from
evident waveform distortions. In contrast, the waveform of the
MS-FDTD scheme is highly consistent with the waveform of
the source, and the initial waveform of the Gaussian pulse
source produces a mutation that remains consistent in the
MS-FDTD scheme without additional mutation phenomena.
Furthermore, the MS-FDTD scheme is a more suitable candi-
date in cases where a similarly specialized source is required.

For a more intuitive comparison of the differences between
the two methods, as shown in Fig. 7, we generated graphs
depicting the temporal evolution of errors between the
MS-FDTD scheme and the analytical solution waveform, as
well as between the FDTD scheme, the ADI-FDTD method,
and the analytical solution waveform. It is evident that the
error in the FDTD scheme increases over time, while the
error in the ADI-FDTD method is significantly smaller.
In contrast, the error in the MS-FDTD scheme remains
nearly constant. This numerical example underscores that the

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 73, NO. 12, DECEMBER 2025

0.3 T T T T T T T
—MS-FDTD
—FDTD ]

e

i

n
T

ADI-FDTD

=
ot - e
- S o

The Total Error of Ez(V/m)
g
b

<

-0.05 1 . I . I .
180 200 220 240

40 60 80 100 120 140 160
t(ns)

Fig. 7. Comparison of errors between the ADI-FDTD method, the FDTD
method, and the MS-FDTD method with respect to the analytical solution.

T T T T T
---MS-FDTD 4
—FDTD
---Analytical
ADI-FDTD |+

=
%
T

o
>
T

°
'S
T

Electric Field(V/m)

=
1)
T

I I I I
5050 5100 5200 5300

Cells

I I
4850 4900 4950 5000 5150

Fig. 8. Two-dimensional analysis of time-domain waveforms using the ADI-
FDTD method, the MS-FDTD method, and the FDTD method with a Gaussian
pulse; comparisons are made against the analytical solution waveform.

MS-FDTD method effectively preserves the original waveform
shape and maintains this fidelity over extended periods. It
can be observed that, over extended iterations, the error in
the FDTD method and the ADI-FDTD method progressively
accumulates, whereas the MS-FDTD method maintains late-
time stability.

D. Two-Dimensional Plane-Wave Propagation

For the 2-D numerical example, stability was first verified.
The Gaussian source is the same as in the 1-D example, excited
at the 50th cell and propagating along the x-direction, with
the newly developed MS-FDTD scheme’s periodic bound-
ary conditions applied in the y-direction. According to the
required magnetic and electric field components during iter-
ation, the newly developed periodic boundary conditions
involve multiple parameter adjustments for the tridiagonal
matrix coefficients. The spatial increment is set as 0.1 m in all
three directions. It is noteworthy that the MS-FDTD method
employs a time step of 3.33¢”' s (CFL N = 1.41), whereas
the FDTD method and the ADI-FDTD method use a time step
of 2.12¢7!% s (CFLN = 0.9). The waveforms generated by the
three algorithms after propagating travels 5000 cells (1e™® s)
are illustrated in Fig. 8. By utilizing different CFL conditions
and maintaining the same actual physical time, the three
algorithms effectively demonstrate the unconditional stability
of the MS-FDTD method. The waveform produced by the
FDTD method and the ADI-FDTD method exhibits significant
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Fig. 9. Comparison of numerical and analytical results for single cavity mode
in the ADI-FDTD method, the FDTD method, and the MS-FDTD method.

trailing, while the waveform generated by the MS-FDTD
method closely matches the analytical solution as illustrated
in Fig. 8. The MS-FDTD method and the ADI-FDTD method
have been observed to exhibit greater stability than the FDTD
method.

E. Cavity Modes

Furthermore, to analyze the accuracy of the MS-FDTD
method, the resonant modes of a cavity were simulated. Due
to the significant differences in the magnetic and electric field
distributions between the MS-FDTD method and the FDTD
method, the PEC boundary required for cavity modes needs to
be redeveloped. Initially, a 0.01 x 0.01 m 2-D waveguide reso-
nant cavity underwent single-mode testing with a spatial incre-
ment of 5e™* m. To enhance the accuracy of the FDTD method,
a time step of 1.67¢!> s (CFLN = 0.7) is adopted. In com-
parison, due to the unconditional stability of the MS-FDTD
method, a time step of 3.3¢7!2 s (CFLN = 1.41) is employed.
After the same amount of real physical time has elapsed. Fig. 9
illustrates that the resonant mode of the cavity, as simulated by
the MS-FDTD method, is 21.2112 GHz. This result is closer to
the analytical solution (21.2132 GHz) compared to the FDTD
method, which produced a result of 21.1912 GHz. Moreover,
the ADI-FDTD method performs the worst among the three,
producing the least accurate result. The numerical efficiency
of the three methods is nearly comparable.

To better discern the differences between the two algo-
rithms, we increased the cavity size to 0.02 x 0.02 m while
keeping the CFL condition unchanged, for multimode anal-
ysis (TE», TE;,, TE,3, and TEs3). As depicted in Fig. 10,
numerical results for all four modes in the MS-FDTD scheme
surpassed those of the FDTD method. The ADI-FDTD method
produced less accurate results compared to the other two
methods and is thus mainly excluded from direct comparison
here. Specifically, the FDTD method exhibited a numerical
error of 0.46%, in the TE3;3; mode, whereas the MS-FDTD
scheme showed only 0.005% error. Detailed numerical results
for the four cavity modes are presented in Table I, demon-
strating that the MS-FDTD scheme provided results closer
to the analytical solution with errors below 0.02%, highlight-
ing its high precision. The FDTD method performed worse
than the MS-FDTD scheme, while the ADI-FDTD method
delivered the least accurate results. As illustrated in Fig. 10
and detailed in Table I, under relaxed CFL conditions, the
MS-FDTD method not only achieves higher accuracy but also
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Fig. 10. Comparison of numerical and analytical results for multiple cavity
modes in the ADI-FDTD method, the MS-FDTD method, and the FDTD
method.

TABLE 1
NUMERICAL RESULTS OF THE CAVITY MODE

FDTD ADI-FDTD Analytical
Modes Fr(eg:;:;)cy Error Frfgl;;:zn)cy Error Fr(eglli[e;)cy
TE, 16.7267 0.26% 16.5843 1.11% 16.7705
TEx 21.1712 0.20% 20.9142 1.41% 21.2132
TEx; 23.5735 0.61% 23.1196 2.52% 23.7171
TEs3 26.9169 0.46% 26.3693 2.49% 27.0416
Time 1.4908s 1.9477s
MS-FDTD(Proposed) Analytical
Modes FrfgLIEIeZn)cy Error Frz:él;fzn)cy
TE 16.7668 0.02% 16.7705
TE», 21.2112 0.001% 21.2132
TEx; 23.7738 0.02% 23.7171
TEs3 27.0554 0.005% 27.0416
Time 0.9092s

demonstrates greater computational efficiency. Under identical
computational settings and real-time simulation conditions, the
MS-FDTD scheme achieved a runtime of 0.9092 s, compared
to 1.4908 s for the FDTD method and 1.9477 s for the
ADI-FDTD method. Multimodal computations revealed a dis-
tinct advantage of the MS-FDTD scheme over the FDTD
method.

Furthermore, due to the unconditional stability, a more
relaxed CFL condition can be chosen; the MS-FDTD
scheme demonstrated significant computational time savings.
Additionally, Table II presents the numerical results and com-
putation times for cavity modes under different CFL settings in
the MS-FDTD scheme, confirming its unconditional stability.
Fig. 11 offers a more intuitive insight into the numerical
results of cavity modes under varying CFL conditions. With
increasing CFL values, the computed results for all four modes
decrease and diverge from the analytical solution. When the
CFLN is set to 1.27, the numerical results obtained using the
MS-FDTD method are most closely aligned with the analytical
solution.

F. Human Skin Model

To further validate the performance of the MS-FDTD
scheme, its numerical accuracy was investigated through sim-
ulations using human skin as a medium. It is well established
that the human body is a dispersive medium, exhibiting
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Fig. 11. Numerical calculation results of cavity modes in the MS-FDTD

scheme under different CFL conditions.

TABLE I

NUMERICAL RESULTS OF THE MS-FDTD METHOD UNDER
DIFFERENT CFL CONDITIONS

Modes TE]Z TEZZ TE23 TE33
CFLN Frequency (GHz)
1.27 16.7814 21.2112 23.7738 27.0554
141 16.7668 21.1712 23.6937 26.957
2.26 16.3463 20.5706 22.7928 259159
2.82 16.0661 20.1702 22.1522 25.1752
3.39 15.7858 19.7497 21.5115 24.4144
3.96 15.5255 19.3293 20.8509 23.6537
The number .
CFLN of iterations Time(s)
1.27 12222 0.9617
1.41 11000 0.9092
2.26 6875 0.5127
2.82 5500 0.4438
3.39 4583 0.3855
3.96 3929 0.3474

PBC

Air

PBC

Fig. 12. Computational model of human skin medium includes a Gaussian
source propagating along the x-direction, with periodic boundaries in the
y- and z-directions. The model also includes two types of media, representing
the palm and the hand dorsum.

dielectric constant variations with frequency. The issue of
dispersive medium for the MS-FDTD scheme has not been
addressed in this article, which will be the subject of further
articles. For the purposes of this article, it is simplified here.
The dielectric constant of skin remains relatively stable within
a certain frequency range, enabling it to be approximated as a
constant. Within this frequency range, the dielectric constant
of the palm is set to 25 and that of the hand dorsum is set
to 35. As shown in Fig. 12, the 3-D computational domain
is configured with dimensions of 130 x 20 x 20 cells. In the
y-direction, the proportions of the two media to air are both
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Fig. 14. Relative error comparison between the ADI-FDTD method, the
MS-FDTD method and RCWA, and the FDTD method and RCWA.

set at 7:3, and spatial increments are uniformly set to 6e™> m.
The time increment for the MS-FDTD method is set to
1.15¢7'2 s (CFLN = 10), while for the FDTD method and
the ADI-FDTD method, it is set to 1.15¢”!® s (CFLN = 1).
A Gaussian source propagates in the x-direction, while the
periodic boundary conditions of the MS-FDTD scheme are
applied in the other two directions. Depending on the required
magnetic and electric field components during the iteration, the
periodic boundary conditions necessitate multiple parameter
adjustments to the tridiagonal matrix coefficients.

The dimensions of the palm and the hand dorsum are both
set to 3¢~ m, and the specific modeling diagram is shown in
Fig. 12. As shown in Fig. 13, the numerical results of all three
methods closely agree with those of the rigorous coupled wave
analysis (RCWA), with the MS-FDTD method exhibiting a
slight advantage across the entire frequency band. To elucidate
the differences between the MS-FDTD method, the ADI-
FDTD method, and the FDTD method more clearly, we have
generated a relative error graph, as presented in Fig. 14. The
relative error is defined as: 20log10(|T; — Ty|/Ty), where T
represents the transmission coefficient results calculated by the
MS-FDTD method, the ADI-FDTD method, and the FDTD
method, and T represents the transmission coefficient results
calculated by RCWA. It is evident that across the calculated
frequency range, the accuracy of the MS-FDTD method is con-
sistently higher than that of the ADI-FDTD method. Compared
to the FDTD method, the MS-FDTD method yields results
that are very similar; however, from an overall perspective,
the MS-FDTD method demonstrates a clear advantage. The
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Fig. 15. Geometric shape of the onboard chip. (a) Overview. (b) yz cross
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MS-FDTD method adopts a more relaxed CFL condition,
which, although it introduces a relatively higher computational
workload per iteration, completes the simulation in 63.12 s.
This is significantly faster than the conventional FDTD method
(94.41 s) and much faster than the ADI-FDTD method, which
requires 520.32 s.

G. Onboard Chip

In the final analysis, an electric field amplitude evaluation
was performed on the onboard chip model to assess the
MS-FDTD method’s capability in accurately handling com-
plex structures. The chip model configuration and dimensions
are illustrated in Fig. 15, where the dielectric constants for
GaAs and Al,O; are set to 12 and 8, respectively. A Gaussian
source, consistent with those used in earlier simulations, was
employed, with the point source placed at the center of
the model to ensure uniform propagation, while all external
boundaries were defined using PEC boundary conditions to
confine the field within the model. The simulation was con-
ducted on 50 x 50 x 50 cells, a size chosen to balance
accuracy and computational efficiency, with both the MS-
FDTD and conventional FDTD methods, and ADI-FDTD
methods all using a spatial step size of 2.5¢™’ m to maintain
comparable resolution across the grid. For temporal accuracy,
the MS-FDTD method used a time step size of 9.68¢7'¢ s
(CFLN = 2), while the time step size for both the FDTD
method and the ADI-FDTD method was set to 4.84e7'6 s
(CFLN = 1), thereby ensuring stability and enabling a direct
performance comparison under controlled conditions. Addi-
tionally, commercial software COMSOL was used for the
verification of both methods.
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Fig. 16. Electric field amplitude after passing through the onboard chip.

TABLE III
SIMULATION STEPS AND SIMULATION TIME

FDTD ADI-FDTD MS-FDTD COMSOL
Time Step (s) 4.84x10"°  9.68x107°  9.68x10"°  2.8x107'°
Number of 40000 20000 20000 6915
Iterations
Simulation 461.65 370.84 382.31 1.26x10°
Time (s)
memory 16.7MB 34.6MB 35.4MB 76GB

As shown in Fig. 16, after the same amount of real physical
time (1.92e7!' s), the electric field amplitudes measured at
the same spatial location across the simulation domain for
both methods, along with the COMSOL simulation results,
show excellent agreement. The ADI-FDTD method, however,
exhibits relatively poor accuracy. Notably, the MS-FDTD
method results demonstrate higher accuracy compared to the
FDTD method when benchmarked against COMSOL. This
highlights the accuracy and stability of the MS-FDTD method
in simulating electric field behavior within complex materials.
As shown in Table III, under the more relaxed CFL conditions,
the MS-FDTD method demonstrates superior efficiency, with
a computation time of 382.31 s, significantly lower than the
FDTD method’s 461.65 s and COMSOL’s computation time.
However, the computation time of the MS-FDTD method is
slightly longer than that of the ADI-FDTD method (370.84 s).
This is because, compared to the ADI-FDTD method, the
MS-FDTD method needs to handle additional bidiagonal
matrices. For the same reason, the MS-FDTD method requires
slightly more memory than the ADI-FDTD method. Never-
theless, it remains significantly more memory-efficient than
COMSOL, which demands substantial memory resources for
mesh-based matrix assembly and storage, with matrix sizes
potentially reaching up to 76 GB for large-scale simula-
tions. While the MS-FDTD method requires somewhat more
memory than the standard FDTD method, it still offers a
manageable memory footprint, typically in the range of a
few megabytes. This makes it a practical choice for large-
scale simulations that require both high accuracy and efficient
memory usage.

V. CONCLUSION

This article integrates the multisymplectic algorithm with
computational electromagnetics for the first time and validates

Authorized licensed use limited to: Zhejiang University. Downloaded on January 23,2026 at 12:16:10 UTC from IEEE Xplore. Restrictions apply.



10504

its advantages in solving Maxwell’s equations. Through a
local 1-D approach, we have significantly reduced the com-
putational burden of the multisymplectic Preissman scheme,
though its efficiency remains slightly inferior to conventional
FDTD methods. Additionally, the computational effort of the
multisymplectic Preissman scheme is reduced by a local 1-D
approach. Furthermore, for the first time, the distribution of
grid for the multisymplectic Preissman scheme is provided
in order to realize the time and space iterations based on
the FDTD method to simulate electromagnetic problems.
In addition, the stability of the multisymplectic algorithm
is demonstrated by verifying that both the multisymplectic
Preissman scheme and the MS-FDTD scheme are uncondi-
tionally stable. Finally, the advantages of the multisymplectic
Preissman algorithm are demonstrated through a series of
numerical examples, ranging from 1-D to 3-D scenarios. The
algorithm is shown to have significant advantages, including
late-time stability, high accuracy, and unconditional stabil-
ity. In conclusion, the multisymplectic Preissman algorithm
is applicable in the field of electromagnetic society, which
represents a novel promising research direction in numerical
computation.
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