Modern Thin Film Deposition Technologies

Instructor: Ya-Hong Xie Yhx@ucla.edu

Course Objective:

To prepare students with a solid knowledge of the physics behind majority of modern vapor phase thin film deposition technologies.

Text book:

<Thin Film Deposition: Principles & Practice> by Donald L. Smith; McGraw-Hill, ISBN 0-07-058502-4

Materials covered:

Chapters 1-7 & 9.

Optional reading: <Thin Film Processes II> John L. Vossen, and Werner Kern, Academic Press Inc., ISBN: 0-12-728251-3

Date	Sequence	Content		
06/27/2017	1	Ch.1: introduction; Ch.2: Gas kinetics		
06/27/2017	2	Ch.3: Vacuum Technology		
06/27/2017	3	Ch.4: Evaporation;		
06/29/2017	4	Ch.5: Deposition		
06/29/2017	5	Ch.5: Deposition		
06/29/2017	6	Ch.6: Epitaxy		
06/30/2017	7	Ch.7: CVD		
06/30/2017	8	Ch.7: CVD		
06/30/2017	9	Ch.9: Plasma		

- 1.3 Process Steps (see Fig. 1.1)
- a) Source: solid, liquid, vapor or gas; (flux)
- b) Transport: in vacuum or in gas phase (uniformity)
- c) Deposition: absorption, surface migration and reaction (morphology)
- d) Analysis

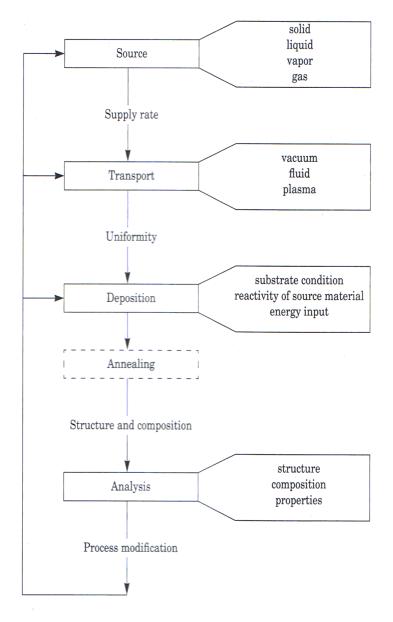


Figure 1.1 Thin-film process steps. In all steps, process monitoring is valuable, and contamination is a concern.

1.4. The difference between vapor and gas:

vapor should be condensable whereas gas is not.

For this course, we will focus on vapor and gas phase transport.

Physical vapor deposition (PVD): vapor phase transport;

Chemical vapor deposition (CVD): gas phase transport;

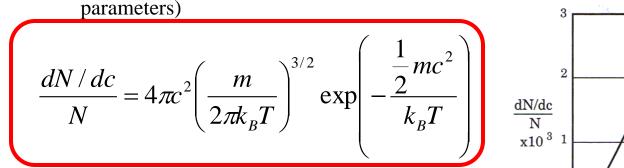
Chapter 2. Gas Kinetics

- The distribution function of gas molecules;
- The impingement rate of gas molecules on surfaces;
- Transport properties: diffusion, viscosity, and heat transfer;

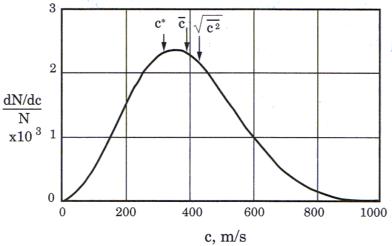
2.2 Maxwell-Boltzmann Distribution (see Fig. 2.4):

Now we shift our attention to the behavior of the evaporants after they become "airborne";

The molecular speed distribution as functions of the mass and the temperature (macroscopic



- N-total # of molecules in the ensemble
- c molecular speed
- m molecular mass
- T absolute temperature



N = number of atoms in the distribution

 \overline{c} = mean speed $\sqrt{\overline{c}^2}$ = root-mean-square (rms) speed

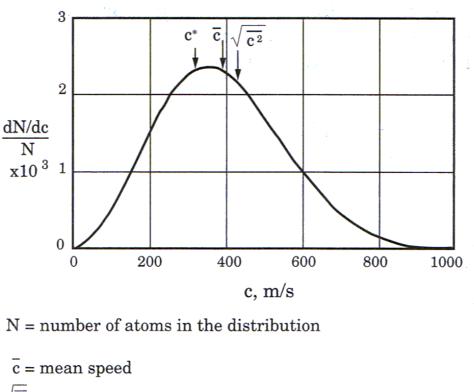
 $c^* = speed of sound$

Figure 2.4 Maxwell-Boltzmann distribution of molecular speeds for Ar at room T.

2.4 Average speeds: Knowing the speed distribution (MB and Fig.2.4) several statistical measures of the molecular motion can be derived.

$$\begin{split} \bar{c} &= \int_{c=0}^{c=\infty} c \frac{dN/dc}{N} dc = \sqrt{\frac{8RT}{\pi M}} \\ R &= k_B N_A \\ M &= m N_A \\ \sqrt{\overline{c^2}} &= \sqrt{\int_{c=0}^{c=\infty} c^2 \frac{dN/dc}{N} dc} = \sqrt{\frac{3RT}{M}} \\ c_m &= c \Big|_{\frac{d}{dc}} \left(\frac{dN}{dc}\right) = 0 \end{split}$$

where N_A is Avogadro's number, 6.02x10²³ mc/mol;



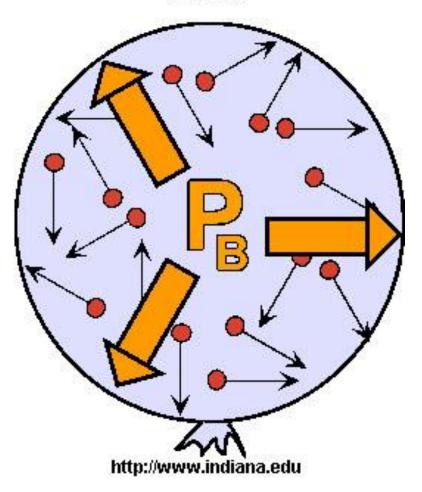
 $\sqrt{c^2}$ = root-mean-square (rms) speed

 $c^* = speed of sound$

Figure 2.4 Maxwell-Boltzmann distribution of molecular speeds for Ar at room T.

Pressure of A Body of Gas Molecules

Figure 5.1.1 Internal pressure in a balloon.



2.5 Molecular Impingement Flux (see Fig. 2.5)

This is a quantity that is fundamental to the film deposition rate to the zeroth order.

2.5.1 Consider a gas molecule at A;

2.5.2 Consider the case in which there is no bulk flow, which is always true when one gets close to a stationary surface. As a result, the direction of motion is completely random.

2.5.3 Focusing on molecules with velocity v;

2.5.4 A molecule has 50% chance to have the velocity pointing downward and will hit the surface of interest

$$J_i = \frac{1}{2} n \bar{v}_x$$

where n is the density of molecules at point A.

Starting from this slide, we shift our attention to how the evaporants strike a surface after they arrive at the vicinity of the substrate surface;

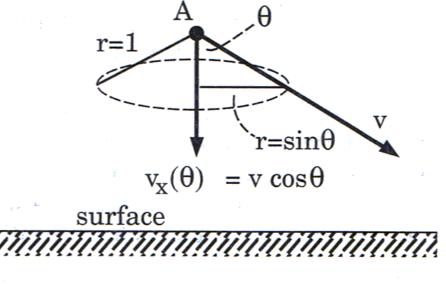


Figure 2.5 Geometry of molecular impingement.

2.5.5 Now we need to express J_i in terms of an average v_x that represents molecules with a given v but with directions varying from $\theta = 0$ to $\theta = 90^\circ$. The average is carried out across a hemisphere surface of radius r = 1 for simplicity. The flux continuity dictates that the flux is the same across the flat surface and across the fractional sphere:

$$\overline{v}_{x} = \frac{\int v_{x} dA}{\int dA} = \frac{1}{2\pi} \int_{0}^{\pi/2} (v \cos \theta) \cdot (2\pi \sin \theta) d\theta$$

where $v \cos\theta$ is the x component of v over the ring band with an incremental area of $(2\pi \sin\theta) d\theta$ [alternatively, if $r \neq 1$, then the ring band incremental area will be $(2\pi r.\sin\theta)r.d\theta$]: $\therefore \bar{v}_x = \frac{1}{2}v$

surface

MSE 224 Ya-Hong Xi Figure 2.5 Geometry of molecular impingement.

2.9 Knudsen Equation

Using
$$J_i = \frac{1}{2}n\left(\frac{1}{2}v\right) = \frac{n}{4}v \Rightarrow \frac{n}{4}c$$
 and $\bar{c} = \sqrt{\frac{8RT}{\pi M}}$ Important for PVD
we have $J_i = \frac{n}{4}\sqrt{\frac{8RT}{\pi M}}$ $\therefore n = \frac{p}{k_B T} = \frac{N_A p}{RT}$
 $\therefore J_i = \frac{1}{4}\frac{N_A p}{RT}\sqrt{\frac{8RT}{\pi M}} = \frac{N_A p}{\sqrt{2\pi MRT}}\left(\frac{mc}{m^2 \cdot \sec}\right)$

since R=8.31 Pa•m³/mol•K and N_A=6.02x10²³ mc/mol;

$$\therefore J_i \left(\frac{mc}{cm^2 \cdot \sec}\right) = 2.63 \times 10^{20} \frac{p}{\sqrt{MT}}$$

This is the impingement rate on a unit surface when the units of p, M and T are Pa, g, and K. For the unit of p in torr, the numerical factor changes to 3.51×10^{22} . A useful number to remember is that one monolayer equivalent of molecules strike a surface in one second at p~10⁻⁶ torr.

<u>2.9 Knudsen Equation</u> Relating J_i or J_r to the film growth rate

At the substrate end, J_i is sometimes called J_r . Film growth rate, $\frac{dH}{dt}$ is:

$$J_r = \frac{dh}{dt} \left(\rho_m \frac{N_A}{M} \right)$$

the quantity inside the bracket is the number of atoms per unit volume; J_r is the molecular deposition flux, mc/m²s, and ρ_m =film density, kg/m³.

2.10.3 Mean-free paths:

$$\ell_i = \frac{1}{\pi a^2 n}$$

Figure 2.6 Geometry for mean-free-path calculation showing a particle traveling into the plane of the drawing and encountering gas molecules of diameter a; the particle is an electron in part (a) and an ion in (b).

As a homework assignment, please derive these expressions by yourselves

2.10.4 Numerical examples:

A 0.3 nm diameter molecule's mean free path at 1 Pa (~7 mTorr) and 25°C:

$$l_i = \frac{1}{\sqrt{2\pi a^2 n}} \qquad n = \frac{pN_A}{RT} \qquad \therefore \ell \approx 1.03 \ cm$$

From the ideal gas law, we know p=nkT. For a given T, we know that p is proportional to n. Therefore, it makes sense that *l* is inversely proportional to n and thus to p. It is worth remembering that $l \sim 1$ cm at room T and under 1 Pa.

Similarly, $l \sim 10^{-5}$ cm =0.1 µm at room T under 1 atm.

2.10.5 Knudsen number:

Knudsen number is a dimensionless quantity that characterizes the gas molecule interaction: whether the dominating interaction is molecule-molecule or molecule-wall.

$$K_n = \frac{\ell}{L}$$

L -- characteristic dimension of the container $K_n > 1$ is known as **molecular flow regime** $K_n < 0.01$ is known as **viscous flow regime** In between is the intermediate flow regime.

2.11 Transport Properties: Diffusion, viscosity, and heat conduction

2.11.1 All these transports are described by an equation of the form:

Flux of A = -(proportionality factor) x (gradient in A)

See Table 2.1 on the next slide for equations in one-dimensional case, while keeping in mind that the general form of the equations should be three-dimensional with the gradient being $\nabla \cdot A$ instead of $\frac{\partial A}{\partial x}$

The subject to be discussed throughout the rest of the chapter:

The functional forms of **the proportionality constants** derived from molecular kinetics with emphasis on the **T-dependence**.

2.11 Transport Properties: Diffusion, viscosity, and heat conduction

TABLE 2.1 Gas Transport Properties*

	by Describing equation	Proportionality factor		
Transported quantity		Derivation from elementary kinetic theory	Typical value at 300 K, 1 atm	
Mass	Diffusing flux = $J_A\left(\frac{mc}{cm^2 \cdot s}\right) = D_{AB}\left(\frac{dn_A}{dx}\right)$ (Fick's law)	Diffusivity = $D_{AB}\left(\frac{cm^{2}}{s}\right) = \frac{1}{4}\bar{c}l \propto \frac{T^{7/4}\left(\frac{1}{M_{A}} + \frac{1}{M_{B}}\right)^{1/2}}{p(a_{A} + a_{B})^{2}}$	Ar-Ar: 0.19 cm ² /s Ar-He: 0.72	
Momentum	Shear stress = $\tau(N/m^2) = \eta \frac{u}{x}$	Viscosity = $\eta(\text{Poise})^{\dagger} = \frac{1}{4} \mathbf{n} \mathbf{m} \mathbf{\bar{c}} l \propto \frac{\sqrt{\mathbf{M} \mathbf{T}}}{a^2}$	Ar: 2.26×10^{-4} Poise [†] He: 2.02×10^{-4}	
Energy (heat)	Conductive heat flux = $\Phi\left(\frac{W}{cm^2}\right) = K_T dx$ (Fourier's law)	Thermal conductivity = $K_{T}\left(\frac{W}{cm \cdot K}\right) = \frac{1}{2}n\left(\frac{c_{v}}{N_{A}}\right)\bar{c}l \propto \sqrt{\frac{T}{M}} \frac{c_{v}}{a^{2}}$	Ar: 0.176 mW/cm·K He: 1.52	
Charge	Current density = $j\left(\frac{A}{cm^2}\right) = \frac{-1}{\rho} \frac{dV}{dx} = s \frac{V}{x}$ (Ohm's law)			

*cm-g-s (cgs) units appear here instead of SI units when they are commonly used for these quantities.

[†]1 Poise = 1 g/cm·s = 0.1 kg/m· s or N·s/m² or Pa·s.

2.11.2 Diffusion: mass transport

"Deriving" the 1-D diffusion equation (see Fig. 2.7a). Consider a slab of thickness (mean-free path), and the vapor is composed of molecules of type A and type B. We focus on the diffusion of type A molecule along its own concentration gradient while there is <u>no pressure gradient</u> in the enclosure.

Recall from our discussion on molecular impingement rate: $J_i = \frac{1}{4}n\bar{c}$ Now we have for the upward and the downward flux:

$$J_{A_{u}} = \frac{1}{4} (n_{A} - \Delta n_{A}) \bar{c} \quad \& \quad J_{A_{D}} = \frac{1}{4} n_{A} \bar{c}$$

The net downward flux is: $J_A = J_{AD} - J_{AU} = \frac{1}{4} \Delta n_A \bar{c}$

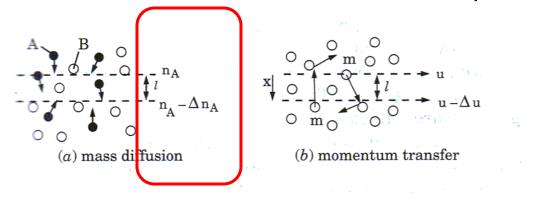


Figure 2.7 Illustration of transport properties on a molecular scale. Flux is downward in the x direction.

2.11.2 Diffusion: mass transport

Now make the approximation:

$$\frac{\Delta n_A}{l} = \frac{\partial n_A}{\partial x}$$

The "-" sign comes from the definition of J_A being the net "downward" flux, i.e. along the direction of negative x.

then
$$J_A = -\left(\frac{1}{4}\ell \bar{c}\right) \bullet \frac{\partial n_A}{\partial x} \equiv -D_A \frac{\partial n_A}{\partial x}$$
 (*Fick's law*) where $D_A = \frac{1}{4}\ell \bar{c}$

i.e., D_A is related to how mobile the molecules are and their mean free path, which means the pressure, M, and T!

2.11.2 Diffusion: mass transport (continued)

Note: the equation is in the same form regardless of how the x-direction is defined or the magnitude of *l*.

$$\therefore \quad l \propto \frac{1}{n}; \quad n = \frac{pN_A}{RT}; \quad \bar{c} = \sqrt{\frac{8RT}{\pi M}}; \quad and \quad D_A \propto \bar{c}l$$

$$\therefore \quad D_A \equiv D_{AB} \propto \frac{T^{3/2}}{\sqrt{M} a^2 p}$$

The empirical value is T $^{7/4}$, a fairly good agreement with T $^{3/2}$.

Under constant p, D depends super-linearly on T.

٠

2.11.4.3 Generalized expression of gaseous heat conduction for both gas flow regimes:

Consider the heat conduction between two parallel plates as shown in fig.2.8, the heat flux can be rewritten into the following form:

$$\Phi = h_c \left(T_h - T_s \right)$$

where the subscripts h and s stand for heater and substrate, respectively.

 h_c is the heat transfer coefficient in W/cm²-K;

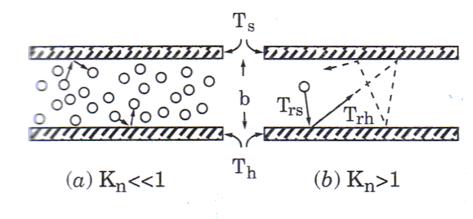


Figure 2.8 Gas-conductive heat transfer between parallel plates at (a) low and (b) high Knudsen numbers, Kn.

2.11.4.3 Generalized expression of gaseous heat conduction for both gas flow regimes:

