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Vacuum fluctuation, zero-point energy, and
computational electromagnetics.

he understanding of the Casimir force foretells applications

in micro/nanoelectromechanical sensors and quantum fric-

tion. We review the history of quantum theory and Casimir

force modeling and, using the homomorphism between
electromagnetic oscillations and a linear pendulum with sim-
ple harmonic oscillation, we explore various concepts needed
for Casimir force calculations. Through the argument prin-
ciple, we simplify the derivation of Casimir energy and,
hence, the Casimir force. Then, we discuss the connection
between the Casimir force and computational electromag-
netics (CEM), focusing on the method of moments (MOM).
Finally, we consider the marriage of these concepts with
recently developed broadband fast algorithms. The resulting
approaches illustrate that the Casimir force calculation is for
various highly complex structures.
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INTRODUCTION

Quantum technologies have progressed by leaps and bounds in
recent years. One of the more recent advances, the advent of a
quantum computer by Google [1], heralds a new age for quan-
tum technologies. As has been shown, quantum Maxwell’s equa-
tions bear many similarities to classical Maxwell’s equations. It is
believed that many classical CEM methods can be used to solve
quantum problems, as well. The Casimir force is one area where
classical CEM can be applied to capture this quantum phenom-
enon. There could be more in the future [2], [3].

Quantum theory was conceived during the early part of
the 20th century [2], [3]. A second wave of interest in it was
aided by advances in nanofabrication and the validation of
the new quantum interpretation by Bell’s inequality in favor
of the spooky nature of quantum theory in the 1980s [4].
In quantum theory, the state of a quantum system is inde-
terminate until after a measurement. Hence, information
can be hidden in a quantum state until a measurement is
performed on that state. This idea can be used for quantum

OCTOBER 2021 IEEE ANTENNAS & PROPAGATION MAGAZINE



communication, forming an entirely secure way of transmit-
ting information, thus ushering in an age of quantum infor-
mation science.

To elaborate, a consequence of this is the idea of superposi-
tion: a quantum system is in a superposition of multiple states
prior to a measurement. The resulting measurement determines
what state the system is in. It also causes the collapse of the lin-
ear superposition of multiple states into the measured one. This
enables a quantum system to have an infinite set of possibilities
before certain measurements. As an example, the location of an
electron, described by a wave function of the Hamiltonian, is
indeterminate. It can be found anywhere the amplitude of the
wave function is nonzero. The resulting measurement decides
the location of the electron. In other words, the electron is in
a linear superposition of states before the measurement. The
measurement collapses the electron to the state that it finds.
This behavior is not possible according the notion of classical
particles; only “ghosts” and “angels” can do that [5].

The third bizarre concept of quantum theory is that of
entanglement. For instance, due to momentum conservation,
two photons generated from a single source have zero total
angular momentum, even if they are traveling away from each
other. Each is either right-hand circularly polarized (RHCP) or
left-hand circularly polarized (LHCP), for a total sum of zero
angular momentum. However, their state is unknown until
there is a measurement. Before that, the quantum system is in a
linear superposition of two photon states, where one of the pho-
tons is RHCP while the other is LHCP. When a measurement is
performed on one of the photons to determine its polarization,
the polarization of the other one is immediately known. For
example, if one of the photons is measured to be LHCP, the
other has to be RHCP. This is true even if the photons are miles
apart, thus illustrating the nonlocality of quantum information.
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This indeterminacy of quantum information can be harnessed
to increase diversity in a quantum state and is useful in quantum
computers. Nonlocality is advantageous in quantum communi-
cation and quantum teleportation. This has caused quite a bit of
excitement in the scientific community.

The Casimir force can be thought of as coming from zero-
point energy and vacuum fluctuation fields (see Figure 1),
which cause matter to be polarized and attracted to other
matter. Hence, even at zero temperature, the attractive force is
there. The experimental confirmation of the Casimir force was
another boon to the validity of quantum theory, which refueled
the interest in Casimir force studies [6]—[18]. One can think of
the Casimir force as an extension of Van der Waal’s forces. They
exist in polar atoms and molecules because they polarize one
another. When molecules become polar, their quiescent state is
to move closer because that would decrease the potential energy
of a system. Boltzmann’s law states that a system would like to be
in the lowest energy state. What happens if at zero temperature
an atom or a molecule becomes neutral or nonpolar? The force
due to polar molecules will disappear, as there are no fields to
polarize them. Fortunately, quantum theory says that even at zero
temperature, a vacuum-fluctuating field exists. This field polarizes
neutral atoms and molecules, causing them to be attracted.

The Casimir force is a further generalization of Van der
Waal’s forces by accounting for quantum vacuum fluctua-
tions and the retardation effect. Originally, a nonrelativistic
quantum mechanical treatment of the problem generated the
London force [19]. The vacuum fluctuation can be decomposed
into Fourier components of different frequencies. Moreover,
since the vacuum field is Maxwellian, it possesses a retarda-
tion effect. Casimir and Polder extended this treatment using
quantum electrodynamic theory to allow for the consequences
of retardation [20]. At low frequencies, these fields are in phase
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or coherent with respect to each
other, causing matter to be attract-
ed. But at higher frequencies, the
polarization of the matter gives rise
to forces that are out of phase, or
incoherent. Hence, the full model
of the Casimir force that accounts
for the retardation effect produces
a force that is weaker than tradi-
tional Van der Waal’s forces, as two
objects are spaced farther apart.
The force was experimentally con-
firmed in 1997 [6], which further
affirmed the validity of quantum theory.

QUANTUM PENDULUM

To comprehend the concept of zero-point energy, it is best to
understand the quantum pendulum [5], [21]-[28], which is
homomorphic to quantum electromagnetic oscillations [29].
Thus, it is also easier to connect classical and quantum mechan-
ics by using Hamitonian mechanics. A classical pendulum can
be described by the Hamiltonian given by

2

_P
H_Zm

5 (1)

2 >
where p and ¢ are conjugate variables describing the momentum
and position of the pendulum, respectively. The pendulum’s equa-
tions of motion can be derived using Hamilton equations. These
equations are derivable through energy conservation [28] and are

dp _

d
P__oi Y _on ©)

9’ dt ~ op-
By using (1), the right-hand side of (2) can be written more

explicitly as

Casimir
Plates Vacuum

Fluctuations

FIGURE 1. The Casimir force between two metal plates exists
at T =0 K, due to the presence of a vacuum fluctuating field.
(Source: Wikipedia.)
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new age for quantum
technologies.

Combining the equation leads to

which is the classical equation of
motion for a pendulum that has the
oscillation frequency wo = Je/m .

To derive the quantum equa-
tions of motion, the quantum Ham-
iltonian needs to be found [28]. Tt is
obtained by elevating the conjugate variables p and ¢ to become
operators p and ¢, respectively. By so doing, the corresponding
Hamiltonian H also becomes an operator H. For these opera-
tors to have meaning, they need to function on a quantum state
|¥ ). The equation of motion of the quantum state | ¥ ) is gov-
erned by the quantum state equation, which is

H|¥)Y=—ino,|¥), (5)

where 9; = 9/dt. (This was originally postulated by Schroding-
er and later used for other equations, including the Dirac
equation [30]. This is analogous to the state-variable approach
in control system theory [31].) When written explicitly, the pre-
ceding equation is

9
p 1 ~9 o 0
%+§w%mq’ |‘P>:lh§|q’> (6)

Furthermore, from energy conservation, the quantum Ham-
ilton equation analogous to (2) can be derived [28]. Moreover,
from the quantum state equation and quantum Hamilton equa-
tion, one can obtain the fundamental commutator

[g,p]=inl. (7)
From this, it can be shown that

P =—ihd/aq. ()

In the preceding, the derivative with respect to an operator has
meaning if the operator is acting on its eigenvector [28], [29]. Using
(8), the quantum state equation (6) can be explicitly rewritten as

R 9% |1 . .y
_%3@2 +§w%mq2]|‘l’)=m§|‘ll) (9)

When it is projected into the coordinate space, it becomes

|h232 1

_h” 90" 1 o 2 — 50
o aqg + 5 womg ]‘I’(q,t) ih at‘I’(q,t). (10)

In this projection, we can think of | ¥ ) as being expanded in
terms of the eigenfunction of the § operator. The preceding is
closer in form to the Schridinger equation [2]. It can be solved by
well-known partial differential equation techniques, such as the
separation of variables. The solution can be written in terms of the
product of Hermite-Gaussian functions and exp (—i@nt), namely,
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Yig,t)=¥u(q)exp(—iwnt). (11)

By using this in (10), it can be shown that ¥, (g) satisfies the
equation

A1 - |
" om dq* ty (Oomq ]qj (q)=hw.¥.(q). (12)

Therefore, ¥, (q), expressible in terms of Hermite-Gaussian
functions, are eigenfunctions of the preceding equation, with
the eigenvalues

= 1 — 1
E, =hw, —ha)o(n+ 2), n —a)o(n+ 2), (13)
where n=0,1,2,.... In (13), E, is the energy of the eigenmode.

The lowest energy mode is

Lswo, (14)

E0=2

which is the zero-point energy of the quantum pendulum.
When this quantum pendulum is in thermal equilibrium with a
bath, various modes of the quantum pendulum will be excited.
The probability of the E, mode being excited, according to
Boltzmann’s law [32], is proportional to

Py ~e ks T), (15)
where T is the temperature of the thermal bath and

ks =1.380649 x 10> JK '
fore, at T =0, the quantum pendulum will be in its Eo state, or

is the Boltzmann constant. There-

the ground state. At the ground state, the quantum pendulum
has zero mean in its oscillation and a nonzero mean square.
That explains the ground state’s nonzero energy. The pendulum
has a fluctuating motion with zero mean and nonzero energy.
The modes of an electromagnetic cavity are homomorphic to
the quantum pendulums of different frequencies. Each of the
modes has zero-point energy. Hence, the total zero-point energy
of all the modes of a cavity is given by

£=y %hw (16)
where m is used to index different modes. The preceding is also
called the Casimir energy, and, as will be shown, it is important
for finding the Casimir force.

ARGUMENT PRINCIPLE

The argument principle for Casimir energy and the Casimir
force was first used in 1968 [33], rarely with the MOM [34]. To
illustrate it, we assume that f(z) is analytic on and inside a closed
contour C, except for finite poles and zeros inside C. In complex
analysis, the argument principle (or Cauchy’s argument prin-
ciple) is given by

()
]{ (LW =o7mi(Z—P), (17)
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where Z and P denote, respectively, the number of zeros and
poles of f(z) inside the contour C, with each zero and pole count-
ed as many times as its multiplicity and order.

Equation (17) is useful for deriving the expression of Casi-
mir energy, which can be represented as the sum of the mode
energy at zero temperature, as in (16). Usually, the total energy
needs to be renormalized since the summation in (16) diverges.
Therefore, the renormalized Casimir energy can be written as

[34], [35]

=S Lpp —
_Z 2ha)ﬂl

m

z %hw;;orm’ (18)

norm

where @, is the system’s mode frequencies and @;"™ is the
normalization frequencies. We seek an alternate way to calcu-
late the Casimir energy in (18). To this end, after changing the

variable z to @, we seek functions f(@) and fuorm (@) such that

flwn)=0 and fiom (@3™) =0 to the first order and with no
poles in f(w) and fuom (@). Then the Casimir energy (18) can
be rewritten as [35]
__h_ d [}, @)
T 47 }idww dw (hl Srom (@) ) (19)
Using integration by parts, (19) becomes
K f(@) .
€= Gm fdoln oy (20)

To further simply the expression, we can construct an infinitely
large semicircular contour C such that the integration along the
infinity path vanishes due to Jordan’s lemma:

__h (= flw) .
£= / Tdoln—= o 1)

Folding the integration to 0 — oo and applying the Wick rotation,

_h (= fl@) .
E=50 fo O (22)
fick) .
-/ d norm lCK) (23)

where we have let @ =ick (k is a real number) for the ease of
the Wick rotation. Equation (23) is an expression to calculate
Casimir energy, with the integrand evaluated at imaginary fre-

quencies, whose convergence property is greatly improved.

RELATION BETWEEN CEM AND THE MOM

The argument principle gives us a concise equation for finding
the energy of these vacaum modes. Traditional CEM algorithms
[36] can be used to define settings where the fluctuating fields
satisfy the boundary conditions. Combined with the argument
principle, a practical method of calculating the Casimir force by
using the MOM arises.

mom

The MOM [37] is a computational algorithm that is commonly
employed in CEM and can solve for the fields scattered from
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a set of objects due to an incident
field. This can be used to solve for
the radar cross section of aircraft,
the performance of an antenna
design, and electrical interfer-
ence in a printed circuit board.
A comprehensive explanation of
the MOM can be found in [38].
In CEM, it is very common to dis-
cuss what is known as the electric
field integral equation (EFIE) when
exclusively dealing with perfect
electric conductor (PEC) objects.
The EFIE is derived from two
simple conditions. The first is that
siven a set of source currents (these -
ire impressed currents, as opposed science.
to induced ones [39]), we can derive
the resulting electric field via
E(r,w)= ia),ufdr'ﬁ(r,r’)-](r'), (24)
where G(r,r’) is the free space dyadic Green’s function that
relates a point source current to its resulting electric field. In
essence, the electric field is the summation of the fields that
arise when we represent the source currents as a collection of
point sources.

The second stipulation is that PEC objects impose a bound-
ary condition along their surfaces that requires the total tangen-
tial electric field to be zero. When solving for the fields scattered
by an incident source, the total field is the summation of the
incident and scattered fields. Equation (24) can be written more
succinetly by using an integral operator L::

E(r)=L(r,x)-J), (25)
where integration across repeated variables is implied. By using
the subspace projection method [22], [38], the preceding can be
converted to a matrix equation:

(bi(r),E'(r))= ZN: aj(bi(r), L(r,x')-b; (r)), (26)
i=1

where bi(r) are the basis and testing functions [38]. This
becomes the matrix equation

V=Z.], 27)
where Zjj =(b;(r), L(r,r')-b;(r"), Ji=ai, and Vi =(b;(r),
E'(r)). The vector V is the excitation vector, defined by the
known incident electric field. The matrix Z is called the
impedance matrix and relates the scattered current vector
J with its excitation. Thus, given the known excitation field,
the scattered currents can be found via J=Z".V. The
resulting coefficients can be used with basis functions to
reconstruct the scattered currents and fields.

This idea can he
used for quantum
communication,
forming an entirely
secure way of
transmitting
information, thus
ushering in an age of
quantum information

THE MOM AND THE CASIMIR FORCE
The marriage of the MOM and
other CEM techniques with the
calculation of the Casimir force
was developed in the Reid, Rodri-
guez, White, and Johnson method
[40], [41]. However, a simpler and
more general derivation can be
performed by using the argument
principle approach [34]. As we have
seen, starting from the assumption
that we can determine the eigen-
frequencies of the field configu-
rations that satisfy the boundary
conditions imposed by the objects
of interest, Casimir energy can be
represented as in (23). The prob-
lem is thus to find some function
f(w) and its associated normaliza-
tion fuom (@), taken as the geometry when the objects are
infinitely separated, that evaluate to zero at the eigenfrequen-
cies of the Casimir problem. If we were to imagine our objects
inside a PEC cavity, the eigenfrequencies of interest would be
the frequencies of the cavity modes, in other words, the fre-
quencies where the electromagnetic fields satisfy the bound-
ary conditions without any external sources. The use of a
cavity and PEC objects was conducted in Casimir’s first paper
to calculate the Casimir force between two parallel, infinite,
metallic plates [42].

Recall that the MOM, constructed from the boundary con-
ditions imposed by PEC objects, gives us (27), which relates the
excitation fields to the induced currents through a free-space
dyadic Green’s function that relates a point source current to the
resulting electric field. In the case of the Casimir force, we wish
to find the frequencies where currents can excite electric fields
that satisfy the boundary conditions in the absence of any excita-
tions. That is, we wish to find the frequencies where

Z-]=0. (28)

Since the impedance matrix is singular at these frequencies,
we conclude that f =detZ =0 for the natural modes. In the
case of enclosing our PEC objects inside a cavity, we would need
only to adjust the matrix problem so that the dyadic Green’s
function relates a point source current to the resulting electric
field. Then, we would take our cavity and expand its volume to
the limit of infinity to represent free space. In doing so, we would
arrive at the Casimir energy equation defined by (23) and (28),
where the dyadic Green’s function used in the impedance matrix
is now the traditional free space dyadic Green’s function with the
imaginary frequencies used in the EFIE. The Casimir energy
and force then become

_detZ(k) .
35 ),y S 29)
F:—g—;ﬂ’"dwiln det Z(k), (30)
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where V; represents the deriva-
tives with respect to the physical
displacement of the ith object (the
one we wish to find the forces act-
ing upon). We can think of this as
the change in the Casimir energy
by perturbing the position of the
object of interest. The integrand
of the Casimir energy is found by
solving for the eigenvalues of the

impedance matrix generated with do “‘al'
imaginary frequencies. Specifi-
cally (the following formula can be
shown by using the fact that the determinant of a matrix is also
the product of its eigenvalues [43]),

detZ(k) & A
N etz ()~ 2, In(-3) (31

where Ax and A7 are the eigenvalues of Z and Z, respectively.

For the Casimir force, assuming that Z is invertible, the
integrand can be expressed as

- v
VilndetZ = %%Z_, B

_ tr(adj(Z)-ViZ)
B detZ ’
=tr(Z7'.V/Z), (32)

where the second equation is obtained from Jacobi’s formula,
which relates the gradient of the determinant of a matrix to
the trace of the matrix. (Matrix Z is singular at the resonance
frequencies along the real axis. The original integration path
encloses, but does not contain, these frequencies. After the Wick
rotation, the integration path will be evaluated along the imagi-
nary axis. Hence, it is a valid assumption.) The term adj(Z) is the
adjugate matrix Z: adj(Z)=detZ-Z .

Therefore, the Casimir force can be expressed as the trace of
a matrix or the sum of eigenvalues:

F :_g_; /0 *dktr(Z7 (k) - Vi Z(K)),
N
e [k Y a, (33)

27 Jo =
where o, are the eigenvalues of the generalized eigenvalue
problem

ViZ(k) x=aZ(K)-x. (34)

By taking the Wick rotation and converting the impedance
matrix to imaginary frequencies, we find that the integrand of
the Casimir energy and force are concentrated in the low fre-
quencies and that they quickly approach zero as the frequency
increases. This makes it easy to use a Gauss—Laguerre quadra-
ture rule to integrate in the imaginary frequency domain,
enabling us to solve the impedance matrix by using a small
number of frequencies to estimate the Casimir effect.
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This hehavior is not
possihle according

the notion of classical
particles; only “ghosts”
and “angels” can

To calculate Zw, recall that its
elements are defined as Zjo=
(bi(r), L(r,x')-b;(r)), where
bi (r) represents the basis functions
defined on the surface meshes of the
objects. This defines an interaction of
the source basis function b (r) to a
response on the testing basis function
bi(r). If the objects were at infi-
nite distances, no fields generated by
currents on one object would reach
the others. Thus, Zj.. =0 for pairs
of bases that lie on different objects;
otherwise, the entries will be the same as Z. Similarly, the matrix
ViZ will have only nonzero elements for the entries that rep-
resent interactions between the Casimir object of interest with
another object. This makes the gradient matrix V;Z have block
diagonal matrices of zeros (since the block diagonal entries are
interactions between basis functions on the same object). This
means that V;Z behaves as if it were preconditioned for the
iterative eigenvalue solvers that are used in (34).

It is important to note that the underlying principle of this
process is that we have defined a simple matrix equation that
encapsulates the boundary conditions that must be satisfied
and the fact that the fields must meet these conditions in the
absence of an exciting source. A number of CEM algorithms
apply to various conditions that can be used as direct substitu-
tions for the preceding impedance matrix. The case of homoge-
neous bodies of dielectrics can be handled by methods such as
the Poggio—Miller—Chang—Harrington-Wu-Tsai (PMCHWT)
algorithm [44]. The cases of PEC and homogeneous dielectric
bodies are handled by using surface integrals since the scat-
tered currents can be restricted to the surfaces of the objects.
Bodies of inhomogeneous materials can be managed through
volumetric integral equations [45] and finite-element methods
[46]-[48]. Another difficulty in CEM is using the MOM across
all frequencies. At very low frequencies, certain mathematical
problems arise that can be solved by a new impedance matrix
defined by algorithms such as the augmented electric field
integral equation [49]. All these algorithms can be used as
direct replacements in the preceding analysis. As long as
we keep the same general relationship of Z-J=V, we can
employ the argument principle to relate an algorithm to the
Casimir force.

CASIMIR FORCE BETWEEN HIGHLY COMPLEX STRUCTURES

NUMERICAL ALGORITHM

As discussed, the Casimir force can be calculated with the
MOM, which encapsulates the boundary condition of a system.
As shown in (33), the inverse of the system matrix Z and the
derivative of Z with respect to the displacement direction i are
needed at the frequencies along the imaginary axis. The conver-
sion to the imaginary frequencies is a result of the Wick rota-
tion in (23), and it is motivated by the faster convergence in the
evaluation of the integral [50]. Therefore, the integral in (33) can
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be evaluated with the numerical
integration method by using a few
quadrature points:

Pz ) VW),

(35)

where K; is the quadrature point
along the imaginary axis and @; is
the weighting factor.

Consider a problem with two
objects; the matrix Z can be writ-
ten as a 2 x 2 block matrix:

= Zn 212]

=\Zs 7o (36)

The evaluation of the term V;Z can be simplified since only the
interaction terms in the MOM matrix are needed. When the
derivative is taken with respect to the displacement of the two
objects, ViZ11 and V;Z22 vanish due to the fact that Z11 and
Z22 are invariant with respect to the relative location of objects
1 and 2. Therefore,

Vizlz] (37)

_ 0
Viz= [Vizm 0

Apparently, when the direct method is used to solve for the inte-
grand in (35), the complexity of the problem is then governed by
the computation of 7.

To avoid high complexity for large problems, we can apply
fast algorithms. First, we notice that in (37) the diagonal blocks
become zero, leaving only the interaction terms in the matrix. The
matrix V;Z becomes low rank if the two objects are far from each
other since Z12 and Z21 are low rank. Still, if the matrix elements
in Z~' need to be explicitly computed, the overall complexity is
O(N?®), where N is the size of matrix. Since the matrix in (37) is
low rank, we can approximate it with the randomized singular
value decomposition (fSVD) [51]:

ViZ~ U .X .V, (38)
— - =
NXN Nxk kxk kxN

where only the k largest singular values are kept and others are
assumed to be small and ignored. In using the rSVD to factorize
the matrix into the form shown in (38), it is necessary to calculate
the matrix vector product V;Z - x, where x can be an arbitrary
vector. Assuming that the flops count of the matrix vector prod-
uct is O(T), the total complexity of the decomposition in (38) is
O (4kT + 2k*N).
Plugging (38) into (35), the expression of the Casimir force is

(39)

F=—loSwu(Z! T-T.V).
J

We can then compute the product of the matrices from left to
right. The first part, X=2Z""-U, can be calculated by solving
the matrix equation with multiple right-hand sides defined in U:

=U.

7

(40)

N

=
X
=z
=
XMl
~

=z
=~

Two photons generated
from a single source
have zero total angular
momentum, even if
they are traveling away
from each other.

The complexity of this step can be
reduced by using an iterative solver,
O(CKT), where C is the average num-
ber of iterations and T is the com-
plexity of a matrix vector product.
Then, we can easily compute

. 4D

gonal)

Y:
-

{™

X
Nxk kxk (d\ﬁ
where X is the diagonal matrix and the complexity is O(kN).
Finally, the trace calculation is

N &

tr(Y- V) =3y v (42)

i
where i and j are the row and column indices in the matri-
ces. The complexity is O(kN). Assuming that the number of
iterations is constant and independent of the matrix sizes, the
overall dominant complexity is O (kT + kN), governed by
(38) and (40).

Noticing that in the matrix vector product in (38) and (40)
the matrices are represented with the integral kernel of Green’s
function, g(r,x’)= 1/4ﬂ| r—r
multipole algorithm (FMA) to accelerate the matrix vector

eik‘rfr'l

. we can use the fast

product. However, the conventional FMA is suitable for a real
wavenumber k (or a complex k with a small imaginary part).
When the wavenumbers become purely imaginary, as in the case
of calculating the Casimir force, the FMA needs modifications
for numerical stability. In this article, we leverage the new broad-
band stable FMA, namely, hybrid FMA, as proposed in [52], and
extend it to imaginary frequencies. At purely imaginary frequen-
cies, the wavenumber k is also purely imaginary since € and p
are always real along the imaginary frequency axis. By writing
k = ik, Green’s function expanded through the addition theorem
can be rewritten as

4 ~ K S (=D 2L+ Dirkd) ki (krap) P (R - rap),

(43)

where i; and k; are the modified spherical Bessel function of the
first kind and second kind, defined by the spherical Bessel function
jr and the spherical Hankel function of the first kind h;” [53]:

(44)

(45)

jilkx) = i'i1(kx),
hf”(kx) =—iki(kx).

The vectors satisfy rj = ra +d, and P is the Legendre polyno-
mial of order [. In (43), all the terms in the right-hand side are
real, therefore eliminating the numerical errors of the complex
values in ji and h;”.

Following similar derivations in [52], one can find an expan-
sion of Green’s function with a hybridization of the plane (now
the exponential) wave and multipoles:
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—Krij

~ K/dzl{e K-Tia (lo,l{, l'ab) . e—x-rb;
plane wave expansion
+Kk(B(K, Tia) - & (Lo, L, K, Yab) - ﬂ(’{,rbj)), (46)

multipole expansion

r,]

where the plane wave expansion term captures the contribu-
tions from [ = 0 to L, in (43) and the multipole expansion term
captures those from [ = Lo +1 to L,,. In the plane wave expan-
sion term, the translation operator o (lo, &, rimn) can be written as

Lo
(Lo, K, ) —4#2 @+ Dki(kra) PR -xa).  (47)

E<L0, Lma K, rﬂb),
and B(k,r,), which are the receiving pattern, translator, and

In the multipole expansion, the terms B (K, i),

radiation pattern, are represented as vectors and matrices. The
elements are defined as

ﬁl m IC I'm Zx/— Yl'm'(eia, (Pia)il'(’{ria), (48)
L
Lo,Ln,K,Xab 4
o 17 (Lo, L, K, Yab) l§+1 TAL L L (49)

X Yl m"—m’ 0017, ¢ab)kl Kr(lh)

ﬁl m K r[y 2‘/7 yl m" 9[) ,¢b >11 (K:T[;j) (50)

where |I" =1" | <1 <|l' +1"|. It should be noted that for a very
large &, it is not necessary to calculate Green’s function because
the value vanishes.

To validate the proposed hybrid FMA at imaginary frequen-
cies, the method is applied to the worst case, when the two

Aggregation

Disaggregation

FIGURE 2. The worst-case one-level FMA calculations.
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FIGURE 3. The worst-case absolute errors of the FMA with
two buffer boxes at different 3[k]a.
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points r, and r;, reside on the corner of the box, as in Figure 2.
Here, the field is calculated through the aggregation from the
source point r, to the center of the box, translation to the center
of the other box, and then disaggregation to the field point. In
this example, the distance between the two boxes is D = 2a.
By applying the method to determine L, and L, as discussed in
[52], the errors of the algorithm can be well controlled within a
large range of k = 3[k]. As demonstrated in Figure 3, the target
errors can be precisely achieved and controlled up to 107°.

NUMERICAL RESULTS

In this section, we demonstrate the calculation of the Casimir
force between various structures. We validate our method by
comparing it with numerical and experimental results in the
literature. More importantly, we simulate complex structures and
find phenomena that have never been reported. The first example
is a simple case, where two perfect conducting spheres (radius
R = 1 nm) are displaced by distances d = 0.1R,R and 2 R, as
shown in Figure 4. (The conversion factor to nN is fic / RIx 10°,
which gives roughly 32 for R = 1 nm and 0.32 for R = 10 nm.)

10!

107"
1078

-5
10 £(io) =2

1079

Contributions to
Casimir Force (hc/R?)

107" 100 10! 102
S[KIR

(@)

101

Weighted Contributions to
Casimir Force (hc/R?)

107" 10° 10! 102
S[KIR

(b)

|—-—d=0.1R — d=1R — d=2R

FIGURE 4. The contributions of the Casimir force at imaginary
frequencies for two identical PEC spheres with a radius of
R=1nm.(a) The trace tr(Z~'(x)) - V;Z(k)) evaluated at the
|mag|nary wave numbers k. (b) The weighted contributions
witr(Z7' (k))-V;Z (k) to the Casimir force.
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FIGURE 7. The repulse force between the two short U-shape
PEC structures.

The MOM matrices are directly constructed using the EFIE.
As illustrated in Figure 4, the contributions to the Casimir force
dramatically decrease as the imaginary frequency K increases,
due to the increasing damping factor in Green’s function. The
numerical integration in (35) gives the net force between the
two spheres, which is shown as the solid line in Figure 5. The
results are validated by comparing them to the Casimir energy
derivative in [40].

More interesting results appear in Figure 6 for two dielectric
spheres submerged in different fluids. As suggested by Lifshitz’s
theory [54] and experimentally verified in [55], if the permittiv-
ity of the two objects and the fluid satisfies

€1(i€) < €mua(i€) < €2(i€), (51)

the force between the two spheres becomes repulsive. In this
numerical example, the permittivity of the spheres is fixed for all
frequencies €1 =1.5 and €2 = 6.5. The background permittivity
is swept from one to seven, with a step of one. The amplitude of
the force is normalized by proximity force approximation as

1 heR
720d° °

Frra = (52)

As shown in Figure 6, the repulsive force can be found when the
relation in (51) is satisfied; i.e., 1.5 < €qud < 6.5, while the force
is always attractive for other €fuia.

In another example, we simulate a corrugated structure with
all PEC materials, as in Figure 7. The height of the two identi-
cal U-shape structures is 2 L, where L is the width and length.
In this simulation, we use the conventional MOM and the fast
algorithm (rfSVD plus the FMA) as a comparison. It can be seen
that the two methods match well in terms of the amplitude of
the Casimir force. The errors in the results of the fast algorithm
are largely due to the truncated number of the singular values
to factorize V;Z and the residual errors in the iterative solver to
find Z™'. The outcomes are unsurprising since the direction of
the force is always attractive.

In the next example, we found that a repulsive Casimir
force can exist between PEC structures. A look-alike geometry
reported in [56] shows repulsive forces for T-shaped protru-
sions. The effective repulsive force is a result of the attraction
of the parts on the two bodies. In our example, given in Figure 8,
the argument used in [56] cannot explain the existence of
the repulsive force. Figure 8 is similar to Figure 7 but with
a large height of 10 L and a width of 5 L. The lengths of the
structures are 2 L and 10 L, as in Figure 9, so as to make mul-
tiple narrow cavities. The results in Figure 10 and Figure 11
document that the force changes its sign as d increases. The
Casmir force is attractive when the distance d is small. As d
increases, the force becomes repulsive and starts to oscillate
between repulsive and attractive. In Figure 10, the Casimir
force of the geometry in Figure 9 is compared, while the unit
length Casimir force, scaled by factors of two and 10 respec-
tively, is in Figure 11, where we can see that the amplitude of
the force can be scaled by length.
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FIGURE 9. The geometry and dimensions of the two tall
U-shape PEC structures.
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FIGURE 10. The attractive and repulsive forces as the
displacement varies between the two tall U-shape PEC
structures in Figure 9.

CONCLUSIONS

In this article, we have given a brief review of the quantum
theory of the quantum pendulum, followed by a discussion of
zero-point energy and vacuum fluctuation. We tried to pres-
ent the topics in such a way that readers with knowledge of
classical electromagnetics and some minimal understanding
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FIGURE 11. The normalized attractive and repulsive forces
(the force per cavity) between the two tall U-shape PEC
structures in Figure 9.

of quantum theory could follow them [57], [58]. We discussed
the argument principle, which enables the calculation of the
Casimir energy more easily from CEM. We illustrated this con-
nection through the MOM. Using this simpler connection, we
illustrated the computations of the Casimir force and Casimir
energy for unprecedented, highly complex structures. We pre-
sented examples where a repulsive Casimir force can exist with
PEC structures, in addition to attractive ones, which has never
been shown before. The availability of repulsive forces in addi-
tion to attractive ones enables applications of Casimir analysis
in microelectromechanical systems and nanoelectromechanical
systems designs.
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