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The understanding of the Casimir force foretells applications 
in micro/nanoelectromechanical sensors and quantum fric-
tion. We review the history of quantum theory and Casimir 
force modeling and, using the homomorphism between 

electromagnetic oscillations and a linear pendulum with sim-
ple harmonic oscillation, we explore various concepts needed 
for Casimir force calculations. Through the argument prin-
ciple, we simplify the derivation of Casimir energy and, 
hence, the Casimir force. Then, we discuss the connection 
between the Casimir force and computational electromag-
netics (CEM), focusing on the method of moments (MOM). 
Finally, we consider the marriage of these concepts with 
recently developed broadband fast algorithms. The resulting 
approaches illustrate that the Casimir force calculation is for 
various highly complex structures.

INTRODUCTION
Quantum technologies have progressed by leaps and bounds in 
recent years. One of the more recent advances, the advent of a 
quantum computer by Google [1], heralds a new age for quan-
tum technologies. As has been shown, quantum Maxwell’s equa-
tions bear many similarities to classical Maxwell’s equations. It is 
believed that many classical CEM methods can be used to solve 
quantum problems, as well. The Casimir force is one area where 
classical CEM can be applied to capture this quantum phenom-
enon. There could be more in the future [2], [3].

Quantum theory was conceived during the early part of 
the 20th century [2], [3]. A second wave of interest in it was 
aided by advances in nanofabrication and the validation of 
the new quantum interpretation by Bell’s inequality in favor 
of the spooky nature of quantum theory in the 1980s [4]. 
In quantum theory, the state of a quantum system is inde-
terminate until after a measurement. Hence, information 
can be hidden in a quantum state until a measurement is 
performed on that state. This idea can be used for quantum 
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communication, forming an entirely secure way of transmit-
ting information, thus ushering in an age of quantum infor-
mation science.

To elaborate, a consequence of this is the idea of superposi-
tion: a quantum system is in a superposition of multiple states 
prior to a measurement. The resulting measurement determines 
what state the system is in. It also causes the collapse of the lin-
ear superposition of multiple states into the measured one. This 
enables a quantum system to have an infinite set of possibilities 
before certain measurements. As an example, the location of an 
electron, described by a wave function of the Hamiltonian, is 
indeterminate. It can be found anywhere the amplitude of the 
wave function is nonzero. The resulting measurement decides 
the location of the electron. In other words, the electron is in 
a linear superposition of states before the measurement. The 
measurement collapses the electron to the state that it finds. 
This behavior is not possible according the notion of classical 
particles; only “ghosts” and “angels” can do that [5].

The third bizarre concept of quantum theory is that of 
entanglement. For instance, due to momentum conservation, 
two photons generated from a single source have zero total 
angular momentum, even if they are traveling away from each 
other. Each is either right-hand circularly polarized (RHCP) or 
left-hand circularly polarized (LHCP), for a total sum of zero 
angular momentum. However, their state is unknown until 
there is a measurement. Before that, the quantum system is in a 
linear superposition of two photon states, where one of the pho-
tons is RHCP while the other is LHCP. When a measurement is 
performed on one of the photons to determine its polarization, 
the polarization of the other one is immediately known. For 
example, if one of the photons is measured to be LHCP, the 
other has to be RHCP. This is true even if the photons are miles 
apart, thus illustrating the nonlocality of quantum information. 

This indeterminacy of quantum information can be harnessed 
to increase diversity in a quantum state and is useful in quantum 
computers. Nonlocality is advantageous in quantum communi-
cation and quantum teleportation. This has caused quite a bit of 
excitement in the scientific community.

The Casimir force can be thought of as coming from zero-
point energy and vacuum fluctuation fields (see Figure 1), 
which cause matter to be polarized and attracted to other 
matter. Hence, even at zero temperature, the attractive force is 
there. The experimental confirmation of the Casimir force was 
another boon to the validity of quantum theory, which refueled 
the interest in Casimir force studies [6]–[18]. One can think of 
the Casimir force as an extension of Van der Waal’s forces. They 
exist in polar atoms and molecules because they polarize one 
another. When molecules become polar, their quiescent state is 
to move closer because that would decrease the potential energy 
of a system. Boltzmann’s law states that a system would like to be 
in the lowest energy state. What happens if at zero temperature 
an atom or a molecule becomes neutral or nonpolar? The force 
due to polar molecules will disappear, as there are no fields to 
polarize them. Fortunately, quantum theory says that even at zero 
temperature, a vacuum-fluctuating field exists. This field polarizes 
neutral atoms and molecules, causing them to be attracted.

The Casimir force is a further generalization of Van der 
Waal’s forces by accounting for quantum vacuum fluctua-
tions and the retardation effect. Originally, a nonrelativistic 
quantum mechanical treatment of the problem generated the 
London force [19]. The vacuum fluctuation can be decomposed 
into Fourier components of different frequencies. Moreover, 
since the vacuum field is Maxwellian, it possesses a retarda-
tion effect. Casimir and Polder extended this treatment using 
quantum electrodynamic theory to allow for the consequences 
of retardation [20]. At low frequencies, these fields are in phase 
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or coherent with respect to each 
other, causing matter to be attract-
ed. But at higher frequencies, the 
polarization of the matter gives rise 
to forces that are out of phase, or 
incoherent. Hence, the full model 
of the Casimir force that accounts 
for the retardation effect produces 
a force that is weaker than tradi-
tional Van der Waal’s forces, as two 
objects are spaced farther apart. 
The force was experimentally con-
firmed in 1997 [6], which further 
affirmed the validity of quantum theory.

QUANTUM PENDULUM
To comprehend the concept of zero-point energy, it is best to 
understand the quantum pendulum [5], [21]–[28], which is 
homomorphic to quantum electromagnetic oscillations [29]. 
Thus, it is also easier to connect classical and quantum mechan-
ics by using Hamitonian mechanics. A classical pendulum can 
be described by the Hamiltonian given by

	 ,H m
p q
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2 2l
= + � (1)

where p and q are conjugate variables describing the momentum 
and position of the pendulum, respectively. The pendulum’s equa-
tions of motion can be derived using Hamilton equations. These 
equations are derivable through energy conservation [28] and are
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Combining the equation leads to
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which is the classical equation of 
motion for a pendulum that has the 
oscillation frequency / .m0~ l=

To derive the quantum equa-
tions of motion, the quantum Ham-
iltonian needs to be found [28]. It is 

obtained by elevating the conjugate variables p and q to become 
operators pt  and ,qt  respectively. By so doing, the corresponding 
Hamiltonian H also becomes an operator .Ht  For these opera-
tors to have meaning, they need to function on a quantum state 

.| HW  The equation of motion of the quantum state | HW  is gov-
erned by the quantum state equation, which is

	 | | ,H i t'2H HW W=-t � (5)

where / .tt2 2 2=  (This was originally postulated by Schröding-
er and later used for other equations, including the Dirac 
equation [30]. This is analogous to the state-variable approach 
in control system theory [31].) When written explicitly, the pre-
ceding equation is

	 .m
p

mq i t2 2
1

2

0
2 2 '

2
2H H~ W W+ =

t
t; E � (6)

Furthermore, from energy conservation, the quantum Ham-
ilton equation analogous to (2) can be derived [28]. Moreover, 
from the quantum state equation and quantum Hamilton equa-
tion, one can obtain the fundamental commutator

	 , .q p i I'=t t t6 @ � (7)

From this, it can be shown that

	 / .p i q'2 2=-t t � (8)

In the preceding, the derivative with respect to an operator has 
meaning if the operator is acting on its eigenvector [28], [29]. Using 
(8), the quantum state equation (6) can be explicitly rewritten as

	 | | .m q
mq i t2 2

12

2

2

0
2 2'

2
2 '

2
2H H~ W W- + =

t
t= G � (9)

When it is projected into the coordinate space, it becomes
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In this projection, we can think of | HW  as being expanded in 
terms of the eigenfunction of the qt  operator. The preceding is 
closer in form to the Schrödinger equation [2]. It can be solved by 
well-known partial differential equation techniques, such as the 
separation of variables. The solution can be written in terms of the 
product of Hermite-Gaussian functions and ( ),exp i tn~-  namely,

One of the more recent 
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of a quantum computer 
by Google, heralds a 
new age for quantum 
technologies.
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FIGURE 1. The Casimir force between two metal plates exists 
at ,T K0= c  due to the presence of a vacuum fluctuating field. 
(Source: Wikipedia.) 
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	 ( , ) ( ) ( ) .expq t q i tn n~W W= - � (11)

By using this in (10), it can be shown that ( )qnW  satisfies the 
equation
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Therefore, ( ),qnW  expressible in terms of Hermite-Gaussian 
functions, are eigenfunctions of the preceding equation, with 
the eigenvalues
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where , , , .n 0 1 2 f=  In (13), En  is the energy of the eigenmode. 
The lowest energy mode is

	 ,E 2
1

0 0'~= � (14)

which is the zero-point energy of the quantum pendulum. 
When this quantum pendulum is in thermal equilibrium with a 
bath, various modes of the quantum pendulum will be excited. 
The probability of the En  mode being excited, according to 
Boltzmann’s law [32], is proportional to

	 ~ ,P e /( )
n

E k Tn B- � (15)

where T is the temperature of the thermal bath and 
. JKk 1 380649 10B

23 1#= - -  is the Boltzmann constant. There-
fore, at ,T 0=  the quantum pendulum will be in its E0  state, or 
the ground state. At the ground state, the quantum pendulum 
has zero mean in its oscillation and a nonzero mean square. 
That explains the ground state’s nonzero energy. The pendulum 
has a fluctuating motion with zero mean and nonzero energy. 
The modes of an electromagnetic cavity are homomorphic to 
the quantum pendulums of different frequencies. Each of the 
modes has zero-point energy. Hence, the total zero-point energy 
of all the modes of a cavity is given by

	 E ,2
1

m
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where m is used to index different modes. The preceding is also 
called the Casimir energy, and, as will be shown, it is important 
for finding the Casimir force.

ARGUMENT PRINCIPLE
The argument principle for Casimir energy and the Casimir 
force was first used in 1968 [33], rarely with the MOM [34]. To 
illustrate it, we assume that f(z) is analytic on and inside a closed 
contour C, except for finite poles and zeros inside C. In complex 
analysis, the argument principle (or Cauchy’s argument prin-
ciple) is given by
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where Z and P denote, respectively, the number of zeros and 
poles of f(z) inside the contour C, with each zero and pole count-
ed as many times as its multiplicity and order.

Equation (17) is useful for deriving the expression of Casi-
mir energy, which can be represented as the sum of the mode 
energy at zero temperature, as in (16). Usually, the total energy 
needs to be renormalized since the summation in (16) diverges. 
Therefore, the renormalized Casimir energy can be written as 
[34], [35]
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where m~  is the system’s mode frequencies and norm
n~  is the 

normalization frequencies. We seek an alternate way to calcu-
late the Casimir energy in (18). To this end, after changing the 
variable z to ,~  we seek functions ( )f ~  and ( )fnorm ~  such that 

( )f 0m~ =  and ( )f 0norm
norm
n~ =  to the first order and with no 

poles in ( )f ~  and ( ) .fnorm ~  Then the Casimir energy (18) can 
be rewritten as [35]
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Using integration by parts, (19) becomes
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To further simply the expression, we can construct an infinitely 
large semicircular contour C such that the integration along the 
infinity path vanishes due to Jordan’s lemma:

	 E ( )
( )

.lni d f
f

4 norm

'
r

~
~

~
=

3

3

-
# � (21)

Folding the integration to 0 "3 and applying the Wick rotation,
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where we have let ic~ l=  (l  is a real number) for the ease of 
the Wick rotation. Equation (23) is an expression to calculate 
Casimir energy, with the integrand evaluated at imaginary fre-
quencies, whose convergence property is greatly improved.

RELATION BETWEEN CEM AND THE MOM
The argument principle gives us a concise equation for finding 
the energy of these vacuum modes. Traditional CEM algorithms 
[36] can be used to define settings where the fluctuating fields 
satisfy the boundary conditions. Combined with the argument 
principle, a practical method of calculating the Casimir force by 
using the MOM arises.

MOM
The MOM [37] is a computational algorithm that is commonly 
employed in CEM and can solve for the fields scattered from 
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a set of objects due to an incident 
field. This can be used to solve for 
the radar cross section of aircraft, 
the performance of an antenna 
design, and electrical interfer-
ence in a printed circuit board. 
A comprehensive explanation of 
the MOM can be found in [38]. 
In CEM, it is very common to dis-
cuss what is known as the electric 
field integral equation (EFIE) when 
exclusively dealing with perfect 
electric conductor (PEC) objects. 
The EFIE is derived from two 
simple conditions. The first is that 
given a set of source currents (these 
are impressed currents, as opposed 
to induced ones [39]), we can derive 
the resulting electric field via

	 , , · ,E r r G r r J rdi~ ~n= l l l^ ^ ^h h h# � (24)

where ,G r rl^ h is the free space dyadic Green’s function that 
relates a point source current to its resulting electric field. In 
essence, the electric field is the summation of the fields that 
arise when we represent the source currents as a collection of 
point sources.

The second stipulation is that PEC objects impose a bound-
ary condition along their surfaces that requires the total tangen-
tial electric field to be zero. When solving for the fields scattered 
by an incident source, the total field is the summation of the 
incident and scattered fields. Equation (24) can be written more 
succinctly by using an integral operator L: :

	 L , · ,E r r r J r= l l^ ^ ^h h h � (25)

where integration across repeated variables is implied. By using 
the subspace projection method [22], [38], the preceding can be 
converted to a matrix equation:
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where ( )b ri  are the basis and testing functions [38]. This 
becomes the matrix equation

	 · ,V Z J= � (27)

where L, ,, ·b r r r rbZij i j= l l^ ^ ^h h h  ,J ai i=  and ,b rVi i= ^ h   
.E ri ^ h  The vector V is the excitation vector, defined by the 

known incident electric field. The matrix Z  is called the 
impedance matrix and relates the scattered current vector 
J with its excitation. Thus, given the known excitation field, 
the scattered currents can be found via · .J Z V1= -  The 
resulting coefficients can be used with basis functions to 
reconstruct the scattered currents and fields.

THE MOM AND THE CASIMIR FORCE
The marriage of the MOM and 
other CEM techniques with the 
calculation of the Casimir force 
was developed in the Reid, Rodri-
guez, White, and Johnson method 
[40], [41]. However, a simpler and 
more general derivation can be 
performed by using the argument 
principle approach [34]. As we have 
seen, starting from the assumption 
that we can determine the eigen-
frequencies of the field configu-
rations that satisfy the boundary 
conditions imposed by the objects 
of interest, Casimir energy can be 
represented as in (23). The prob-
lem is thus to find some function 

( )f ~  and its associated normaliza-
tion ( ),fnorm ~  taken as the geometry when the objects are 
infinitely separated, that evaluate to zero at the eigenfrequen-
cies of the Casimir problem. If we were to imagine our objects 
inside a PEC cavity, the eigenfrequencies of interest would be 
the frequencies of the cavity modes, in other words, the fre-
quencies where the electromagnetic fields satisfy the bound-
ary conditions without any external sources. The use of a 
cavity and PEC objects was conducted in Casimir’s first paper 
to calculate the Casimir force between two parallel, infinite, 
metallic plates [42].

Recall that the MOM, constructed from the boundary con-
ditions imposed by PEC objects, gives us (27), which relates the 
excitation fields to the induced currents through a free-space 
dyadic Green’s function that relates a point source current to the 
resulting electric field. In the case of the Casimir force, we wish 
to find the frequencies where currents can excite electric fields 
that satisfy the boundary conditions in the absence of any excita-
tions. That is, we wish to find the frequencies where

	 · .Z J 0= � (28)

Since the impedance matrix is singular at these frequencies, 
we conclude that Zdetf 0= =  for the natural modes. In the 
case of enclosing our PEC objects inside a cavity, we would need 
only to adjust the matrix problem so that the dyadic Green’s 
function relates a point source current to the resulting electric 
field. Then, we would take our cavity and expand its volume to 
the limit of infinity to represent free space. In doing so, we would 
arrive at the Casimir energy equation defined by (23) and (28), 
where the dyadic Green’s function used in the impedance matrix 
is now the traditional free space dyadic Green’s function with the 
imaginary frequencies used in the EFIE. The Casimir energy 
and force then become
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This idea can be 
used for quantum 
communication, 
forming an entirely 
secure way of 
transmitting 
information, thus 
ushering in an age of 
quantum information 
science.
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where id  represents the deriva-
tives with respect to the physical 
displacement of the ith object (the 
one we wish to find the forces act-
ing upon). We can think of this as 
the change in the Casimir energy 
by perturbing the position of the 
object of interest. The integrand 
of the Casimir energy is found by 
solving for the eigenvalues of the 
impedance matrix generated with 
imaginary frequencies. Specifi-
cally (the following formula can be 
shown by using the fact that the determinant of a matrix is also 
the product of its eigenvalues [43]), 
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where nm  and nm
3  are the eigenvalues of Z  and ,Z3  respectively.

For the Casimir force, assuming that Z  is invertible, the 
integrand can be expressed as
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where the second equation is obtained from Jacobi’s formula, 
which relates the gradient of the determinant of a matrix to 
the trace of the matrix. (Matrix Z  is singular at the resonance 
frequencies along the real axis. The original integration path 
encloses, but does not contain, these frequencies. After the Wick 
rotation, the integration path will be evaluated along the imagi-
nary axis. Hence, it is a valid assumption.)  The term adj Z^ h is the 
adjugate matrix :Z  adj · .Z Z Zdet 1= -^ h

Therefore, the Casimir force can be expressed as the trace of 
a matrix or the sum of eigenvalues:
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where na  are the eigenvalues of the generalized eigenvalue 
problem

	 · · .Z x Z xid l a l=^ ^h h � (34)

By taking the Wick rotation and converting the impedance 
matrix to imaginary frequencies, we find that the integrand of 
the Casimir energy and force are concentrated in the low fre-
quencies and that they quickly approach zero as the frequency 
increases. This makes it easy to use a Gauss–Laguerre quadra-
ture rule to integrate in the imaginary frequency domain, 
enabling us to solve the impedance matrix by using a small 
number of frequencies to estimate the Casimir effect.

To calculate ,Z3  recall that its 
elements are defined as Z ,ij =3

L, ,,b r r r rb·i jl l^ ^ ^h h h  where 
rb i ^ h represents the basis functions 

defined on the surface meshes of the 
objects. This defines an interaction of 
the source basis function rb j ^ h to a 
response on the testing basis function 

.rb i ^ h  If the objects were at infi-
nite distances, no fields generated by 
currents on one object would reach 
the others. Thus, Z 0,ij =3  for pairs 
of bases that lie on different objects; 

otherwise, the entries will be the same as .Z  Similarly, the matrix 
Zid  will have only nonzero elements for the entries that rep-

resent interactions between the Casimir object of interest with 
another object. This makes the gradient matrix Zid  have block 
diagonal matrices of zeros (since the block diagonal entries are 
interactions between basis functions on the same object). This 
means that Zid  behaves as if it were preconditioned for the 
iterative eigenvalue solvers that are used in (34).

It is important to note that the underlying principle of this 
process is that we have defined a simple matrix equation that 
encapsulates the boundary conditions that must be satisfied 
and the fact that the fields must meet these conditions in the 
absence of an exciting source. A number of CEM algorithms 
apply to various conditions that can be used as direct substitu-
tions for the preceding impedance matrix. The case of homoge-
neous bodies of dielectrics can be handled by methods such as 
the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) 
algorithm [44]. The cases of PEC and homogeneous dielectric 
bodies are handled by using surface integrals since the scat-
tered currents can be restricted to the surfaces of the objects. 
Bodies of inhomogeneous materials can be managed through 
volumetric integral equations [45] and finite-element methods 
[46]–[48]. Another difficulty in CEM is using the MOM across 
all frequencies. At very low frequencies, certain mathematical 
problems arise that can be solved by a new impedance matrix 
defined by algorithms such as the augmented electric field 
integral equation [49]. All these algorithms can be used as 
direct replacements in the preceding analysis. As long as 
we keep the same general relationship of · ,Z J V=  we can 
employ the argument principle to relate an algorithm to the 
Casimir force.

CASIMIR FORCE BETWEEN HIGHLY COMPLEX STRUCTURES

NUMERICAL ALGORITHM
As discussed, the Casimir force can be calculated with the 
MOM, which encapsulates the boundary condition of a system. 
As shown in (33), the inverse of the system matrix Z  and the 
derivative of Z  with respect to the displacement direction i are 
needed at the frequencies along the imaginary axis. The conver-
sion to the imaginary frequencies is a result of the Wick rota-
tion in (23), and it is motivated by the faster convergence in the 
evaluation of the integral [50]. Therefore, the integral in (33) can 

This behavior is not 
possible according 
the notion of classical 
particles; only “ghosts” 
and “angels” can  
do that.



20 IEEE ANTENNAS & PROPAGATION MAGAZINEO C T O B E R  2 0 2 1

be evaluated with the numerical 
integration method by using a few 
quadrature points:

j ,( ) ( )Z ZF c w2 tr ·
j

j i
1' d

r
l l=- - h^/  

 
� (35)

where jl  is the quadrature point 
along the imaginary axis and j~  is 
the weighting factor.

Consider a problem with two 
objects; the matrix Z  can be writ-
ten as a 2 × 2 block matrix:
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Z
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Z
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The evaluation of the term Zid  can be simplified since only the 
interaction terms in the MOM matrix are needed. When the 
derivative is taken with respect to the displacement of the two 
objects, Zi 11d  and Zi 22d  vanish due to the fact that Z11  and 
Z22  are invariant with respect to the relative location of objects 
1 and 2. Therefore,

	 .Z Z
Z0
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i
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12
d

d

d
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Apparently, when the direct method is used to solve for the inte-
grand in (35), the complexity of the problem is then governed by 
the computation of .Z 1-

To avoid high complexity for large problems, we can apply 
fast algorithms. First, we notice that in (37) the diagonal blocks 
become zero, leaving only the interaction terms in the matrix. The 
matrix Zid  becomes low rank if the two objects are far from each 
other since Z12 and Z21 are low rank. Still, if the matrix elements 
in Z 1-  need to be explicitly computed, the overall complexity is 

( ),O N3  where N is the size of matrix. Since the matrix in (37) is 
low rank, we can approximate it with the randomized singular 
value decomposition (rSVD) [51]:

	 ,Z · ·U Vi

N N N k k k

T

k N

d . R
# # # #
9 5 5 7 � (38)

where only the k largest singular values are kept and others are 
assumed to be small and ignored. In using the rSVD to factorize 
the matrix into the form shown in (38), it is necessary to calculate 
the matrix vector product · ,Z xid  where x  can be an arbitrary 
vector. Assuming that the flops count of the matrix vector prod-
uct is O(T), the total complexity of the decomposition in (38) is 

( ) .O kT k N4 2 2+

Plugging (38) into (35), the expression of the Casimir force is

	 tr · · · .F c w Z2 U Vj
j

T1'
r

R=- -^ h/ � (39)

We can then compute the product of the matrices from left to 
right. The first part, ,X Z U·1= -  can be calculated by solving 
the matrix equation with multiple right-hand sides defined in :U

            .Z X U·
N N N k N k

=
# # #
5 5 5 � (40)

The complexity of this step can be 
reduced by using an iterative solver, 
O(CkT), where C is the average num-
ber of iterations and T is the com-
plexity of a matrix vector product.

Then, we can easily compute

          ,·Y X
 (diagonal)N k k k

R=
# #

5 5 5 � (41)

where R  is the diagonal matrix and the complexity is O(kN). 
Finally, the trace calculation is

	 · ,tr Y V y v· T
ij

j

k

i

N

ij=^ h // � (42)

where i and j are the row and column indices in the matri-
ces. The complexity is O(kN). Assuming that the number of 
iterations is constant and independent of the matrix sizes, the 
overall dominant complexity is ( ),O kT k N2+  governed by 
(38) and (40).

Noticing that in the matrix vector product in (38) and (40) 
the matrices are represented with the integral kernel of Green’s 
function, ( , ) ,r r r rg e41 r rikr= - -l l l  we can use the fast 
multipole algorithm (FMA) to accelerate the matrix vector 
product. However, the conventional FMA is suitable for a real 
wavenumber k (or a complex k with a small imaginary part). 
When the wavenumbers become purely imaginary, as in the case 
of calculating the Casimir force, the FMA needs modifications 
for numerical stability. In this article, we leverage the new broad-
band stable FMA, namely, hybrid FMA, as proposed in [52], and 
extend it to imaginary frequencies. At purely imaginary frequen-
cies, the wavenumber k is also purely imaginary since e  and μ 
are always real along the imaginary frequency axis. By writing 

,k il=  Green’s function expanded through the addition theorem 
can be rewritten as

	 ( ) ( ) ( ) ( ) ( ),rr
e l i d k r P1 2 1 ·

ab

r
l

l

L

l l ab l ab
0

ab m

. l l l l- +
l-

=

t/ � (43)

where il and kl are the modified spherical Bessel function of the 
first kind and second kind, defined by the spherical Bessel function 
jl and the spherical Hankel function of the first kind h( )

l
1  [53]:

	 ( ) ( ),j kx i i xl
l

l l= � (44)

	 ( ) ( ) .h kx i k x( )
l

l
l

1
l=- - � (45)

The vectors satisfy ,r r dij ab= +  and Pl  is the Legendre polyno-
mial of order l. In (43), all the terms in the right-hand side are 
real, therefore eliminating the numerical errors of the complex 
values in jl  and .h( )

l
1

Following similar derivations in [52], one can find an expan-
sion of Green’s function with a hybridization of the plane (now 
the exponential) wave and multipoles:

Two photons generated 
from a single source 
have zero total angular 
momentum, even if 
they are traveling away 
from each other.
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( , , ) ·

( ( , ) · ( , , , ) · ( , )),

r

r r r

r
e d e l e

L L

·

plane wave expansion

multipole expansion

r r

ij

r

ab

ia m ab bj

2
0

0

· ·
ij

ia bj. ll l a

l b l a l b l+

l l
l-

- -t

ru
1 2 34444444444 4444444444

1 2 3444444444 44444444
#

�
(46)

where the plane wave expansion term captures the contribu-
tions from l = 0 to L0 in (43) and the multipole expansion term 
captures those from l L 10= +  to Lm. In the plane wave expan-
sion term, the translation operator ( , , )rl mn0a l  can be written as

	 ( , , ) ( ) ( ) ( · ) .r rL l k r P4
1 2 1ab

l

L

l ab l ab0
0

0

la
r

l l= +
=

t/ � (47)

In the multipole expansion, the terms ( , ),riab l ( , , , ),rL Lm ab0a lu  
and ( , ),rbjb l  which are the receiving pattern, translator, and 
radiation pattern, are represented as vectors and matrices. The 
elements are defined as

	 ( , ) ( ) ( , ) ( ),r Y i r2 1l m ia
l

l m ia ia l iab l r i z l= - ll l l l l � (48)

	
A( , , , )

( , ) ( ),

rL L

Y k r

4,

,

, ,L L m ab
l L

L

L L L

l m m ab ab l ab

0
1

m

0

#

a l r

i z l

=
= +

-

l m m l

m l

/
� (49)

	 ( , ) ( ) ( , ) ( ),r Y i r2 1l m bj
l

l m bj bj l bjb l r i z l= - )
m l

m
m m m � (50)

where | | | .|l l l l l# #- +l m l m  It should be noted that for a very 
large ,l  it is not necessary to calculate Green’s function because 
the value vanishes.

To validate the proposed hybrid FMA at imaginary frequen-
cies, the method is applied to the worst case, when the two 

points ra and rb reside on the corner of the box, as in Figure 2. 
Here, the field is calculated through the aggregation from the 
source point ra to the center of the box, translation to the center 
of the other box, and then disaggregation to the field point. In 
this example, the distance between the two boxes is .D a2=  
By applying the method to determine L0 and Lm, as discussed in 
[52], the errors of the algorithm can be well controlled within a 
large range of [ ] .k1l =  As demonstrated in Figure 3, the target 
errors can be precisely achieved and controlled up to .10 8-

NUMERICAL RESULTS
In this section, we demonstrate the calculation of the Casimir 
force between various structures. We validate our method by 
comparing it with numerical and experimental results in the 
literature. More importantly, we simulate complex structures and 
find phenomena that have never been reported. The first example 
is a simple case, where two perfect conducting spheres (radius 
R = 1 nm) are displaced by distances . ,d R R0 1=  and 2 R, as 
shown in Figure 4. (The conversion factor to nN is ,c R 102 9#'  
which gives roughly 32 for R = 1 nm and 0.32 for R = 10 nm.) 

a
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Translation
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D

a
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D

FIGURE 2. The worst-case one-level FMA calculations.
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The MOM matrices are directly constructed using the EFIE. 
As illustrated in Figure 4, the contributions to the Casimir force 
dramatically decrease as the imaginary frequency l  increases, 
due to the increasing damping factor in Green’s function. The 
numerical integration in (35) gives the net force between the 
two spheres, which is shown as the solid line in Figure 5. The 
results are validated by comparing them to the Casimir energy 
derivative in [40].

More interesting results appear in Figure 6 for two dielectric 
spheres submerged in different fluids. As suggested by Lifshitz’s 
theory [54] and experimentally verified in [55], if the permittiv-
ity of the two objects and the fluid satisfies

	 ( ) ( ) ( ),i i ifluid1 21 1e p e p e p � (51)

the force between the two spheres becomes repulsive. In this 
numerical example, the permittivity of the spheres is fixed for all 
frequencies .1 51e =  and . .6 52e =  The background permittivity 
is swept from one to seven, with a step of one. The amplitude of 
the force is normalized by proximity force approximation as

	 .F
d
cR

720
PFA 3

3'r= � (52)

As shown in Figure 6, the repulsive force can be found when the 
relation in (51) is satisfied; i.e., . . ,1 5 6 5fluid1 1e  while the force 
is always attractive for other .fluide

In another example, we simulate a corrugated structure with 
all PEC materials, as in Figure 7. The height of the two identi-
cal U-shape structures is 2 L, where L is the width and length. 
In this simulation, we use the conventional MOM and the fast 
algorithm (rSVD plus the FMA) as a comparison. It can be seen 
that the two methods match well in terms of the amplitude of 
the Casimir force. The errors in the results of the fast algorithm 
are largely due to the truncated number of the singular values 
to factorize Zid  and the residual errors in the iterative solver to 
find .Z 1-  The outcomes are unsurprising since the direction of 
the force is always attractive.

In the next example, we found that a repulsive Casimir 
force can exist between PEC structures. A look-alike geometry 
reported in [56] shows repulsive forces for T-shaped protru-
sions. The effective repulsive force is a result of the attraction 
of the parts on the two bodies. In our example, given in Figure 8, 
the argument used in [56] cannot explain the existence of 
the repulsive force. Figure 8 is similar to Figure 7 but with 
a large height of 10 L and a width of 5 L. The lengths of the 
structures are 2 L and 10 L, as in Figure 9, so as to make mul-
tiple narrow cavities. The results in Figure 10 and Figure 11 
document that the force changes its sign as d increases. The 
Casmir force is attractive when the distance d is small. As d 
increases, the force becomes repulsive and starts to oscillate 
between repulsive and attractive. In Figure 10, the Casimir 
force of the geometry in Figure 9 is compared, while the unit 
length Casimir force, scaled by factors of two and 10 respec-
tively, is in Figure 11, where we can see that the amplitude of 
the force can be scaled by length.
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CONCLUSIONS
In this article, we have given a brief review of the quantum 
theory of the quantum pendulum, followed by a discussion of 
zero-point energy and vacuum fluctuation. We tried to pres-
ent the topics in such a way that readers with knowledge of 
classical electromagnetics and some minimal understanding 

of quantum theory could follow them [57], [58]. We discussed 
the argument principle, which enables the calculation of the 
Casimir energy more easily from CEM. We illustrated this con-
nection through the MOM. Using this simpler connection, we 
illustrated the computations of the Casimir force and Casimir 
energy for unprecedented, highly complex structures. We pre-
sented examples where a repulsive Casimir force can exist with 
PEC structures, in addition to attractive ones, which has never 
been shown before. The availability of repulsive forces in addi-
tion to attractive ones enables applications of Casimir analysis 
in microelectromechanical systems and nanoelectromechanical 
systems designs.
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