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Fig. S1. FT-IR spectrum of the PPP polymer. 

The FT-IR spectrum shows the appearances of peaks at 1068, 1741, and 2918 cm−1 which are consistent with stretching 

vibration of Si–O–Si, C=O, and –CH3 on chain. Meanwhile, the 1453 cm−1 band is assigned to –CH2– scissor vibration 

and 1413 cm−1 absorption band belongs to the –CH3 flexural vibration. The absorption peaks of C–O–C stretching 
vibration is observed at 1128 cm−1. There is a peak appeared at 1277 cm−1 which corresponds to the C–F group of the 

poly (trifluoroethyl methacrylate) block.  

  



 

 

 

 

 

Fig. S2. 1H-NMR spectroscopy of the PPP polymer. Tetramethylsilane (TMS) as an internal reference, and dimethyl 

sulfoxide-d6 (CD3SOCD3) and chloroform-d3 (CDCl3) as mixed solvent. 

 

  



 

 

 

 

 

Fig. S3. The molecular weight and the molecular distribution of the PPP polymer. (A), Mass-average molecular 

weight (Mw), and (B), Peak molecular weight (Mp) of the PPP polymer measured by GPC. 

 

  



 

 

 

 

 

Fig. S4. Characterization of the element states of the perovskite surface with the control and PPP-modified. (A), 

XPS full spectra of the control and PPP-modified perovskite films. XPS spectra of (B), Cs 3d, (C), Br 3d, (D), I 3d, 

(E), F 1s, (F), Si, (G), O 1s, and (H), C for the control and PPP-modified perovskite films. 

 

  



 

 

 

 

 

Fig. S5. Interactions between MABr, FAI and the PPP polymer. (A), FT-IR spectra of the PPP polymer, MABr, 

and PPP-MABr. (B), The FT-IR of the N–H stretch in MA+. (C), FT-IR spectra of the PPP polymer, FAI, and PPP-

FAI; (D), The FT-IR of the N–H stretch in FA+. 

 

  



 

 

 

 

 

Fig. S6. Histogram of grain size distribution corresponding to the top-view SEM of the control and PPP-

modified perovskite films. 

  



 

 

 

 

 

Fig. S7. The full width at half maximum (FWHM) of the (100) peak intensity area of the control and PPP-

modified perovskite films. 

  



 

 

 

 

 

Fig. S8. UV-vis absorption spectra of the control and PPP-modified perovskite films. 

  



 

 

 

 

 

 

 

Fig. S9. Scanning transmission electron microscopy (STEM) images and the corresponding high-resolution 

EDX mapping of the lateral structure of the PPP-modified perovskite /NiOx /ITO. 

  



 

 

 

 

 

Fig. S10. The depth profiles of ToF-SIMS. Time of flight secondary-ion mass spectroscopy (ToF-SIMS) depth 

profiles of (A), control and (B), PPP-modified electrodeless PSC devices. C60− is selected for affirming the 

PCBM+C60 ETL, CN− as representing the MA+ and FA+, CN2H4I− as representing the FAI, I−, PbI2
−, and Br− for the 

CsMAFA perovskite. Note: at Fig. S10 A, NiO2
− for the NiOx, InO2

− for the ITO, and Si− for the glass; and at Fig. S10 

B, 18O− and F− for the PPP polymer, and Si− for the PPP polymer and the glass. 

  



 

 

 

 

 

Fig. S11. Statistics of photovoltaic parameters. (A), Voc, (B), Jsc, (C), FF, and (D), PCE statistics of 20 devices for 

the control PSCs and PPP-modified PSCs with different PPP concentration. 

  



 

 

 

 

 

Fig. S12. Optimum J-V curves of the PSCs with different PPP polymer concentration (mg mL−1) measured in 

the reverse scan direction. 

  



 

 

 

 

 

Fig. S13. The J-V curves of the champion devices of control and PPP-modified based on different sweep speed. 

  



 

 

 

 

 

Fig. S14. J-V curves of the PPP-modified PSCs with the best FF based on different sweep speed. (A), 0.25 V s−1, 

(B), 0.05 V s−1, and (C), 0.01 V s−1. HF represents hysteresis factor. 

  



 

 

 

 

Fig. S15. The universality of PPP modification to improve device performance. J-V curves of the control and 

PPP-modified devices measured in the reverse scanning direction for different perovskite compositions: (A), MAPbI3 

and (B), MA0.5FA0.5PbI3.  

  



 

 

 

 

 

Fig. S16. Charge extraction characteristics analysis of PSCs. J-V curves of the (A), electron-only (ITO /SnO2 

/control or PPP-modified /PCBM /Ag) and (B), hole-only (ITO /NiOx /control or PPP-modified /spiro-MeOTAD /Au) 

devices.  

The trap state density is derived from by trap-filled limiting voltage (VTFL) using the equation: 

𝑉𝑇𝐹𝐿 =
𝑒𝑛𝑡𝐿2

2𝜀𝜀0
                                                                         (1) 

where e is the electron charge, nt is trap state density, L is the thickness of perovskite film, ε is the relative dielectric 

constant of perovskite (ε=25.5), and ε0 is the vacuum permittivity. VTFL corresponds to the voltage at the intersection 

of the two J-V curves for the space charge limited and trap filling current regimes indicated by arrows Fig. S16.  

The mobility is obtained according to the space charge limit current (SCLC) regions (n=2), the dark current is 

fitted by the Mott-Gurney law: 

                                   𝐽 =
9

8
𝜀𝜀0𝜇

𝑉2

𝐿3                                                                       (2) 

where J, µ, and V are the dark current density, the mobility of the control or the PPP-modified film, and applied voltage, 

respectively. 

 

  



 

 

 

 

 

 

Fig. S17. Light intensity-dependent Voc and Jsc for CsMAFA devices. (A), Voc and (B), Jsc dependence on 

illumination intensity. 

  



 

 

 

 

 

Fig. S18. Energy-level characterization of perovskite films. (A), UPS measurements of the control and PPP-

modified films. (B), Tauc plots of the control and PPP-modified films. UPS spectra of the control and PPP-modified 

showing (C), the valence band region and (D), the secondary-electron cut-off (SECO) binding energy. 

  



 

 

 

 

 

Fig. S19. The schematic energy level alignment of the solar cell. 

  



 

 

 

 

 

Fig. S20. The photographs of the control and PPP-modified perovskite films aging in air over time at 85 oC and 

40% RH. 

  



 

 

 

 

 

Fig. S21. Perovskite films degradation. (A-B), UV-vis absorption spectra and (C), the corresponding normalized 

UV-vis absorbance at 600 nm of the control and PPP-modified perovskite films as a function of aging time in air at 

85 oC and 40% RH. (D), XRD patterns of the control and PPP-modified perovskite films after aged in air with 85 oC, 

40% RH for 240 h. 

  



 

 

 

 

 

Fig. S22. The contact angle changes of the control and PPP-modified perovskite films with different PPP 

concentration (mg mL−1). 

  



 

 

 

 

 

Fig. S23. Stability test. Most-stable device performance under combined full spectrum sunlight and heat stress for 

the control and PPP-modified PSCs. 

  



 

 

 

 

 

Fig. S24. Thermogravimetric analysis (TGA) curves of the PPP polymer, pristine perovskite, and PPP-modified 

perovskite. 

  



 

 

 

 

 

Fig. S25. The comparison of J-V curves between the theoretical simulation and experimental measurement. 

Theoretically fitted J-V curves by modified detailed balance model and experimentally measured J-V characteristics 

for (A-B), the control PSCs and (C-D), PPP-modified PSCs with the best FF. 

 

In order to understand the loss mechanism and qualify loss proportions (loss factors) of FF, the revised detailed 

balance model is used 

          𝐽 =
𝑉−𝐽𝑅𝑠

𝑅𝑠ℎ
+ 𝐽𝑛(𝑉 − 𝐽𝑅𝑠) + 𝐽𝑟(𝑉 − 𝐽𝑅𝑠) − 𝐽𝑝                                              (3) 

where V is the applied voltage, Jp is the photocurrent, Jr and Jn are the current loss due to the radiative emission and 

the nonradiative defect-induced recombination, respectively. Rs is the series resistance, which describes the ohmic loss 

by the contacts, carrier transport layers, and the hetero-junction interfaces between the perovskite and carrier transport 

layers. The defects, pinholes and voids induced current leakage is represented by the shunt resistance Rsh. 

 

The photocurrent is given by 

                   𝐽𝑝 = 𝑞 ∫ 𝛼(𝜆, 𝐿)
∞

0

𝛤(𝜆)𝜆

ℎ𝑐0
𝑑𝜆                                                                 (4) 

where c0 is the speed of light in air,  is the AM 1.5 G spectrum of Sun,  is the wavelength and q is the elementary 

charge. The absorptivity  is the ratio of power absorbed by the perovskite active layer over the power of incident 

Sunlight. It can be obtained by numerically solving Maxwell equation. The refractive indices of materials can be 

obtained by ellipsometer measurement. 

 

The radiative current is written as 

              𝐽𝑟(𝑉 − 𝐽𝑅𝑠) = 𝐽0
𝑟 [𝑒𝑥𝑝 (

𝑞(𝑉−𝐽𝑅𝑠)

𝑘𝐵𝑇
) − 1]                                                     (5) 

where kB is the Boltzmann constant and T is the Kelvin temperature. Here, the radiative saturation current 𝐽0
𝑟

 
is of the 

form 

               𝐽0
𝑟 = 𝑞 ∫ 𝛼(𝜆, 𝐿)

∞

0

𝛤0(𝜆)𝜆

ℎ𝑐0
𝑑𝜆                                                                    (6) 



 

 

 

 

It is proportional to the spectral overlap integral between the absorptivity  and black-body (thermal) emission 

spectrum 0 at room temperature (T=300 K).  

 

For perovskite solar cells, the dominant nonradiative recombination types are the bulk defect-induced 

recombination and the surface defect-induced recombination. Thus, the nonradiative current reads 

𝐽𝑛(𝑉 − 𝐽𝑅𝑠) = 𝑞𝐿𝛾𝑏 𝑛𝑖 𝑒𝑥𝑝 (
𝑞(𝑉−𝐽𝑅𝑠)

2𝑘𝐵𝑇
) + 𝑞𝛾𝑠 𝑒𝑥𝑝 (

𝑞(𝑉−𝐽𝑅𝑠)

𝑘𝐵𝑇
)                                            (7) 

where γb and γs are the bulk nonradiative recombination rate and surface one, respectively, L is the perovskite active 
layer thickness, and ni is the intrinsic carrier density of the perovskite material.  

 

We will use the modified detailed balance model to fit the current density-voltage characteristics of the control 

and PPP-modified devices. The bulk nonradiative recombination rate γb, the surface nonradiative recombination rate 

γs, series resistance Rs, and shunt resistance Rsh will be retrieved. The ideal Shockley-Queisser (S-Q) limits of 

corresponding devices can be accessed by setting Rs =0, Rsh =∞, γb=0 and γs =0. Then, we can quantify the loss 

proportions of FF with the reference to its Shockley-Queisser limit. For example, the drop of FF solely by the bulk 

defect-induced recombination can be obtained by setting Rs =0, Rsh =∞ ,γs=0, but γb to its practical value (retrieved by 

the modified detailed balance model). Once we obtain the loss of FF values due to four factors, i.e. bulk defect-induced 

recombination, surface defect-induced recombination, Rs, and Rsh, we can obtain the weights or proportions of the four 

losses listed in Table S5. Table S5 lists the loss proportions (loss factors) of FF in the control and the PPP-modified 

devices, with reference to their S-Q limits achieved by setting Rs=0, Rsh=∞, γb=0 and γs=0. It can be seen that the loss 

proportions exhibit drastic reductions for the bulk defect-induced recombination and shunt resistance after 

incorporating the PPP polymer. Regarding the control device, with nearly 81% loss proportions, bulk defect-induced 

recombination contributes significantly to the low FF (0.770) with reference to its S-Q limit (0.904). After introducing 

the PPP material into active layer, the bulk defect-induced recombination and the shunt current are suppressed, and 

thus the FF is increased to 0.862 and with 30% loss proportions coming from the γb and near-zero form the Rsh. These 

findings confirm that the loss of FF (0.862) in the PPP-modified device with reference to its S-Q limit (0.904) is 

predominantly caused by the surface defect-induced recombination rather than by Rs and Rsh; and reduce the bulk 

defect-induced recombination can effectively enhance the FF.  

 
 

  



 

 

 

 

Table S1. The best photovoltaic parameters of inverted PSCs for the control and PPP-modified device with different 

PPP concentration measured in reverse scan directions under standard AM 1.5 illumination (100 mW cm−2). (Data in 

brackets are the average values of each parameter). 

Concentration 

[mg mL−1] 

Voc 

[V] 

Jsc 

[mA cm−2] 
FF 

PCE 

[%] 

control (0) 
1.082 

(1.075±0.015) 

22.32 

(21.82±0.38) 

0.770 

(0.756±0.014) 

18.62 

(17.76±0.49) 

0.04 
1.119 

(1.090±0.013) 

22.97 

(22.53±0.53) 

0.792 

(0.794±0.011) 

20.36 

(19.47±0.56) 

0.1 
1.131 

(1.121±0.007) 

23.24 

(22.91±0.24) 

0.841 

(0.818±0.018) 

22.11 

(21.27±0.47) 

0.6 
1.121 

(1.115±0.012) 

22.56 

(22.19±0.57) 

0.822 

(0.799±0.022) 

20.79 

(19.75±0.63) 

1 
1.128 

(1.114±0.012) 

21.32 

(20.44±0.93) 

0.796 

(0.798±0.024) 

19.14 

(18.20±0.68) 

 

  



 

 

 

 

Table S2. The champion photovoltaic parameters of inverted PSCs for the control and PPP-modified measured at 

different scanning speeds in different scanning directions under standard AM 1.5 illumination (100 mW cm−2). 

Device Direction 
Speed 

[V s−1] 

Voc 

[V] 

Jsc 

[mA cm−2] 
FF 

PCE 

[%] 

Hysteresis 

Factor [%] 

control 

reverse 
0.25 

1.083 22.45 0.783 18.76 
5.81 

forward 1.074 22.77 0.722 17.67 

reverse 
0.01 

1.081 21.88 0.757 17.91 
1.84 

forward 1.080 21.72 0.749 17.58 

PPP-

modified 

reverse 
0.25 

1.131 23.30 0.841 22.15 
1.02 

forward 1.131 23.16 0.837 21.92 

reverse 
0.01 

1.131 23.22 0.840 22.05 
0.88 

forward 1.131 23.10 0.837 21.87 

 

 

 

 

 

 

 

 



 

 

 

 

Table S3. The comparison of FF and PCE for the previous studies based on the modification of interfacial and active 

layer. 

Materials/ 

Methods 
Device structure 

Voc 

[V] 

Jsc 

[mA 

cm−2] 

FF 

PC

E 

[%] 

Year/Ref

. 

A10C60 ITO/PEDOT:PSS/MAPbI3:A10C60/PC61BM/Al 0.86 18.1 0.867 13.5 
2015 

(40) 

H2O ITO/PEDOT:PSS/MAPbI3/PC71BM/Ca/Al 1.03 20.6 0.850 18.0 
2015 

(41) 

BMIMBF4 

FTO/NiOx/ 

(FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3- 

BMIMBF4/PCBM/BCP/Cr(Cr2O3)/Au 

1.08 23.8 0.810 19.8 
2019 

(24) 

PBTI ITO/NiOx/CsFAMA-PBTI/PCBM/ZrAcac/Ag 1.13 22.9 0.795 20.6 
2019 

(49) 

PMMA 

ITO/PTAA/PMMA/ 

Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/C60/BC

P/Ag 

1.12 23.1 0.803 20.8 
2019 

(50) 

ASE-GB-H2O ITO/PEDOT:PSS/MAPbI3/C60/BCP/Ag 1.06 23.1 0.860 21.0 
2018 

(42) 

C8H17NH3)2SO4 
ITO/PTAA/Cs0.05FA0.81MA0.14PbI2.55Br0.45 - 

C8H17NH3)2SO4/C60/BCP/Cu 
1.16 22.6 0.804 21.1 

2019 

(45) 

Oligomeric 

Silica (OS) 

ITO/PTAA/FA0.85MA0.15Pb(I0.85Br0.15)3@OS/P

CBM/C60/BCP/Cu 
1.15 23.1 0.811 21.5 

2019 

(43) 

DMAI 
ITO/NiOx/MA0.89DMA0.11PbI3/choline 

chloride/C60/BCP/Ag 
1.12 23.5 0.820 21.6 

2019 

(44) 

LAIs 

ITO/PTAA-LAIs/(CsPbI3)0.05( 

FA0.85MA0.15Pb(I0.85Br0.15)3)0.95 

/PCBM/BCP/Ag 

1.21 22.6 0.816 22.3 
2020 

(48) 

F2TCNQ 
ITO/NiOx/F2TCNQ/ 

(CsPbI3)0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95 

/PCBM/BCP/Ag 

1.15 23.6 0.830 22.5 
2020 
(46) 

AALs 
ITO/PTAA/Cs0.05(FA0.92MA0.08)0.95 Pb(I0.92 

. Br0.08)3-AALs/C60/BCP/Cu 
1.17 24.1 0.816 23.0 

2020  

(8) 

room-

temperature 

(RT) 

crystallizing 

ITO/NiOx/RT-MAPb(I1-

xClx)3/PCBM/BCP/Ag 
1.16 23.52 0.847 23.1 

2020 

(47) 

PPP 
ITO/NiOx/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15

)3-PPP/PCBM+C60/BCP/Cr/Au 

1.13 23.2 0.841 22.1 This 

work 1.10 23.3 0.862 22.1 

  



 

 

 

 

Table S4. Comparison of the stability of the solar cells in our work with some recent reports. PCE0 and PCEt are the 

efficiency of devices before and after stability tests. 

Device structure 
Light 

source 
Ageing condition 

Degradation 

factor 

PCE0 

[%] 

PCEt/

PCE0 
Reference 

Planar n-i-p structure       

ITO/TiO2-

Cl/perovskite/Spiro-

OMeTAD/Au 

Xenon 

lamp* 

Nitrogen, 

SPO,500 h 

Light 

(without 

UV) 

~20 90% 
Science, 

2017 (61) 

ITO/C60-

SAM/SnOx/PCBM/perovskite

/polymer/Ta-WOx/Au 

White 

LED 

Nitrogen, 

Open-circuit,1000 

h 

Light 

(without 

UV) 

~20 95% 
Science, 

2017 (62) 

ITO/SnO2/perovskite/ 

EH44/MoOx/Al 

Plasm

a lamp 

 

Air, RH ~10- 

20% 

SPO,1000 h 

Light (with 

UV), 20-30 

°C 

~12% 94% 

Nat. 

Energy, 

2018 (63) 

ITO/SnO2/PCBM:PMMA/ 

perovskite/PMMA/HTM /Au 

White 

LED 

Nitrogen, 

SPO,1000 h 

Light 

(without 

UV), 20 °C 

19.54 78% 
Science, 

2018 (64) 

ITO/d-TiO2/ mp-TiO2/ 
perovskite/WBH/P3HT/ 

Au 

White 

LED 

Air, RH ~30%, 
encapsulated, 

SPO, 1370 h 

Light 
(without 

UV), 25 °C 

N.A 95% 
Nature, 

2019 (11) 

Planar p-i-n structure       

FTO/LiMgNiO/perovskite/ 

PCBM/Nb-TiO2/Ag 

Xenon 

lamp* 

Dry cabinet, RH 

<20%, 

encapsulated, 

SPO,1000h 

Light 

(without 

UV), 45-50 
oC 

~16 >90% 
Science, 

2015 (65) 

ITO/NiOx/perovskite 

/PCBM/ZrAcac/Ag 

Xenon 

lamp 

Air, RH ~35%, 

encapsulated, 

SPO, 200 h 

Light (with 

UV), ~23 oC 
N.A 76% 

Adv. 

Funct. 

Mater. 

2019 (49) 

ITO/SM-HTMs 

/perovskite/C60/BCP/Ag 

White 

LED 

Air, RH ~34%, 

encapsulated, 

SPO, 500 h 

Light 

(without 

UV), 25 °C 

N.A 90% 

Adv. 

Mater. 

2019 (66) 

ITO/NiOx/perovskite /choline 

chloride/C60/BCP/Ag 

White 

LED 

Air, RH ~25%, 

encapsulated, 

SPO, 800 h 

Light 

(without 

UV), 20 °C 

18 80% 

Adv. 

Mater. 

2019 (44) 

ITO/PTAA/perovskite 

/C60/BCP/Cu 

Plasm

a lamp 

Air, RH ~60, 

SPO,1200 h 

Light (with 

UV), 65 °C 
19.44 

96.8

% 

Science, 

2019 (45) 

ITO/PTAA- BDAI/perovskite 

/PCBM/BCP/Ag 

White 

LED 

N2, 

SPO,10 h 

Light 
(without 

UV), 25 °C 

~21.8 
98.6

% 

Joule 

2020 (48) 

ITO/PTAA/perovskite-

AALs/C60/BCP/Cu 

Xenon 

lamp* 

N2, 

encapsulated, 

SPO, 1000 h 

Light 

(without 

UV), 40 °C 

21.2 
No 

loss 

Nat. 

Energy 

2020 (8) 

ITO/NiOx/perovskite-

PPP/PCBM+C60/BCP/Cr/A

u 

Xenon 

lamp 

Air, RH ~40%, 

encapsulated, 

open-circuit,1000 

h 

Light (with 

UV), ~75 oC 
22.0 91% 

This work 

White 

LED 

Air, RH ~40%, 

encapsulated, 

SPO, 1000 h 

Light (with 

UV), ~45 oC 
~21 

No 

loss 

*A 420-nm cutoff UV filter was used during this stability test. 



 

 

 

 

Table S5. Loss proportions of FF (with reference to their Shockley-Queisser limits) for the control and PPP-modified 

devices. F and R represent forward and reverse scanning modes. 

Loss proportions 

Bulk defect-

induced 

recombination 

Surface defect-

induced 

recombination 

Series resistance Shunt resistance 

Control (F) 82.64%  2.15%  6.61%  8.60% 

Control (R) 80.97%  4.46%  4.23%  10.34% 

PPP-modified (F) 29.18%  62.83%  7.91%  0.08% 

PPP-modified (R) 33.06%  58.10%  8.48%  0.36% 

 

Data S1. (separate file) 

The source data for supporting the conclusions in this manuscript.  
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