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A Novel Miniaturized Strong-Coupled FSS
Structure With Excellent Angular Stability

Tianwu Li"”, Da Li"¥, Pengfei Qin
Wei E. 1. Sha

Abstract—In this article, a novel miniaturized concept named
strong-coupled frequency selective surface (SC-FSS) with excellent
angular stability is presented. First, a conceptual design of SC-FSS
is introduced, where the resonant frequencies are insensitive to al-
most all incident angles. A corresponding equivalent circuit model
is developed to interpret the operating principle and formulate
relevant design equations with an error of 0.2%. Furthermore, an
ultraminiaturized and ultrathin band-stop structure with a unit
cell size of 1¢/35 and thickness of (.26 mm (A ,/578) is designed and
fabricated to verify this concept. Analysis and experiment show that
the proposed band-stop SC-FSS structure can work stably at 2 GHz
for both TE and TM modes, even when the incident angle varies
from 0° to 84°. The measurement results are consistent with those
obtained by full-wave simulations and the equivalent circuit model,
which fully demonstrates that the concept of SC-FSS can be widely
used in designing antenna reflectors, electromagnetic interference
shielding , and angle-insensitive absorbers.

Index Terms—All-angle-insensitive, angular stability, equivalent
circuit model (ECM), miniaturization, strong-coupled frequency
selective surface (SC-FSS).

I. INTRODUCTION

REQUENCY selective surface (FSS), a kind of spatial

filters [1]-[5], has been widely used to design high-
performance radome, antenna reflector, space electromagnetic
interference (EMI) shielding, and electromagnetic stealth [6]—
[10]. The multiband, wideband FSS, and the sharp band-edge
structure have been investigated over the past years [11]-[16].
However, the resonant frequency of the FSS structure shifts
under oblique incidence, which arises the angular instability
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problem restricting the reliable engineering applications of FSS.
In view of the angle-sensitive problem, a lot of research on the
miniaturized FSS has been carried out [17]-[26]. First, Azemi
et al. [20] and Ghosh and Srivastava [21] used meandered
structures to increase the effective electrical length of patches,
resulting in a larger equivalent inductance. However, due to the
limitations of the current processing technology, the structure
of this method is relatively complicated and it is generally
suitable for the lower operating frequency band. Second, the
method of loading lumped elements is adopted to reduce the
size of the structure [22], [23]. Since the high-frequency lumped
inductor and capacitor components are very expensive and have
parasitic elements, this scheme is also constrained. Third, many
groups focus on the research of 2.5-D and 3-D FSS, which can
improve the angular stability by extending the structure along
the longitudinal direction [24]-[26]. Unfortunately, 2.5-D or
3-D FSS structures require a much thicker space and higher
complexity, which is inappropriate in some applicatio scenarios.
At the same time, the most serious problem is that the angular
instability is still existing for TM mode, although the proposed
miniaturized structure is insensitive to the incident angle for TE
mode [27], [28].

In this article, a novel miniaturized concept of strong-coupled
FSS (SC-FSS) based on the interlayer coupling is developed
to achieve the excellent angular stability for both TE and TM
modes. First, we introduce the concept and theory of SC-FSS
by designing a conceptual model in Section II. Its field and sur-
face current distributions are investigated, and a corresponding
equivalent circuit model (ECM) is also established to explain
its operating principle. In addition, we discuss the advantages of
this miniaturization strategy. Furthermore, to verify this concept,
an almost all-angle-insensitive band-stop SC-FSS structure for
both TE and TM modes is presented and fabricated in Section III.
The angle-independent property of this structure is consistent
with the simulated results by CST and ECM, which validates
the proposed technique. Finally, a brief conclusion is drawn in
Section IV.

II. CONCEPT AND THEORY OF SC-FSS
A. Structure Description of the Conceptual Model

Fig. 1(a) shows a conceptual design of an SC-FSS, which con-
sists of three layers, wherein the two metal layers are separately
attached on both sides of a thin dielectric layer Dy. As shown in
Fig. 1(b), the top layer contains a circular patch A; connected
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Fig. 1. Schematic view of the proposed SC-FSS conceptual model. (a) 3-D
view. (b) Top view. (c) Bottom view.
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TABLE I
PHYSICAL DIMENSIONS OF THE PROPOSED SC-FSS CONCEPTUAL MODEL

Parameter P ho ro ri wo

0.254 2 0.15 0.3

Value (mm) 10

with a metal strip, while the geometry of the bottom layer is the
same as that of the top one but mirror symmetry in Fig. 1(c). In
addition, at the edge of the unit cell, the top and bottom layers are
connected through the metal vias Vj, which ensures that the top
and bottom metal strips of adjacent units are connected together.
Rogers RT5880 with permittivity €, = 2.2 and tangent loss tan
0 = 0.0009 is used as the material of the dielectric layer. The
optimized geometric parameters are displayed in Table 1.
Full-wave simulations are implemented using the electromag-
netic simulation software CST Microwave Studio for TE mode
under different incident angles (0°-88°, step = 2°), where the
boundaries in the x and y direction are set as unit cell and those in
the z-direction are set as open (add space). And the frequency-
domain solver is chosen to calculate. In order to observe the
angle response of this model more clearly, the transmission
spectrum of the proposed SC-FSS conceptual model is drawn by
those results as presented in Fig. 2, wherein there is a stopband
near 2.35 GHz. Interestingly, it can be clearly found that at the
resonant frequency f,(6), the structure is not sensitive to the
incident angles, even when the angle approaches at 90°.

B. Operation Principle

The ECM is the most intuitive way to analyze the transmission
performance of the structure, which can help us understand the
working principle of the structure and guide us to design the
specific structure. To further investigate the working principle
of the structure, we first consider a traditional dipole-type FSS
structure, as shown in Fig. 3(a). Its distributions of the electric
field and surface current at the resonant frequency are displayed
in Fig. 3(c) and (d), wherein the surface current distributes on
the patch that can be equivalent to inductance L. Meanwhile,
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Fig.2. Transmission spectrum of the proposed SC-FSS conceptual model for
TE mode.
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Fig.3. (a) Schematic view of a dipole-type FSS. (b) Frequency response of the
dipole-type FSS under different incident angles for TE mode. (c) Distributions
of the electric field at the resonant frequency. (d) Distributions of the surface
current at the resonant frequency (15 GHz).

the electric field concentrates on the truncation at the two ends of
the adjacent patches generating a capacitance Cy. They form an
LC series resonance with a stopband at the resonance frequency
fso = 1/(2m/LoCp). Based on the research in [7], we calculate
the inductance Ly = 7.36 nH and the capacitance Cy = 15.25 {F
from the structure parameters. In addition, due to the coupling
between the unit cells, there will be an angular dispersion [29],
as depicted in Fig. 3(b) that the resonance frequency is shifted
at the oblique incidence.

Different from the traditional FSS design, the SC-FSS benefits
from the strong coupling between the top and bottom layers. To
further understand and analyze the physical mechanism, there
are the distributions of the electric field (in the middle of the
dielectric layer) at 2.35 GHz under TE mode, as shown in
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(b)

Fig. 4. Distributions of the electric field and surface current at 2.35 GHz for
TE mode. (a) Electric field distributions. (b) Surface current distributions.

Fig. 4(a). The electric field is completely bound between two
circular patches A; and A, forming a strong coupling in the
z-direction at the resonance frequency. With the effect of the di-
electric layer, the two circular patches A; and A, can be regarded
as the parallel plate capacitance C, at the specific frequency,
when the incident electromagnetic waves reach the surface of
the structure. Compared with the traditional dipole-type FSS
structure presented in Fig. 3, this parallel plate capacitance
Cs (1.115 pF) is bigger than the capacitance Cy (15.25 fF)
generated at the two ends of the adjacent patches, which is
extremely advantageous for miniaturizing the structure. Thus,
under the same unit cell size, the resonant frequency of SC-FSS
(2.35 GHz) is much smaller than that of the traditional dipole
FSS (15 GHz).

At the same time, it can be found that the currents mainly
distribute on the strip and vias [see Fig. 4(b)], which is equivalent
to an inductance Lg, and the vias are considered to be the induc-
tance L,. The ECM is shown in Fig. 5(b), where the equivalent
capacitance C, and inductance L, form an LC series resonance
with a stopband at this resonant frequency f;. In order to better
verify the above-mentioned theoretical analysis, the parameters
are extracted and calculated by the following empirical formulae
based on the research in [4] and [30]:

eoe,mR2

Cs h (1)
1/2
R, = o1+ 20 (10 (T70) 117726 )
TroEs 2hg
—2R.— (m—2)r 2(p—2R. — (m—2)r
LO:#OP 2( ) 1ln( (p (m—2) 1))
s Wo
(3)

L, = (1 i (2”0)) 4)

5 1
Ls = LO + Lv' (5)

To consider the fringing effect of the E-field, a correction
factor R in (2) given by [31] is introduced to obtain the accurate
capacitance value. Conventionally, due to the angular dispersion
of traditional structures, which makes the equivalent circuit
parameters change with the incident angles, the ECM can only
characterize the transmission response at the normal incidence.
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Fig. 5. (a) Schematic view of the proposed SC-FSS at oblique incidences.

(b) ECM. (c) Simulation results of ECM in comparison with those by CST.
Calculated LC parameters are Cs = 1.115 pF and Ly = 4.098 nH.

What is more surprising is that the ECM of the proposed SC-FSS
can fully depict the transmission at all incident angles for TE
mode because the designed structure is insensitive to all incident
angles based on the above-mentioned principle analysis, which
means that the equivalent circuit parameters are not affected by
the incident angle. The equivalent circuit is simulated by the
circuit simulation software ADS. For TE mode, the free-space
impedance of the incident waves varies with Zy/cos(6), while it
changes to Zy-cos(f) for TM mode [2].

Therefore, we can simulate the transmission curves for the
oblique incidence by adjusting the input and output impedances
in the equivalent circuit, and the comparison results obtained
by CST are shown in Fig. 5(c), where the error of resonant
frequency calculated by ECM is less than 0.2% compared with
that obtained by CST. For the same incident angle, the trans-
mission curves simulated by ECM are completely consistent
with those obtained by CST, confirming that the equivalent
circuit parameters are independent of the incident angle, which
means the proposed SC-FSS conceptual model is insensitive
to all incident angles for TE mode. As a result, the equivalent
inductance L, and capacitance Cg under different structural
parameters can be derived by the numerical calculation, and
the corresponding transmission curve can be demonstrated by
ADS. This computational efficiency is faster than the full-wave
simulation software, which can improve the efficiency of design
and development.

Furthermore, it must be emphasized that adding vias is a
necessary condition in the SC-FSS design. Those vias connect
all elements together, which ensures the interlayer coupling can
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Fig. 6. (a) Similar structure to the structure in Fig. 1(a) without vias at the

edge of the unit cell. (b) Distributions of electric field at 14.6 GHz for TE mode.
(c) Performance under oblique incidence for TE mode.

be excited and there will be no coupling between different unit
cells. Disconnecting the top with the bottom layers by removing
the via will change the resonant mechanism, where the electric
field distributes at the truncation of the cell boundary, instead of
the two circular patches [see Fig. 6(b)]. Fig. 6(c) describes the
situation without vias, where the resonance occurs at 14.6 GHz,
which is much higher than the resonance with vias at 2.35 GHz.
Unfortunately, this will lead to the coupling between the ele-
ments and the structure is sensitive to the incident angles, as
shown in Fig. 6(c).

C. Advantages of SC-FSS in Miniaturization

SC-FSS provides multidimensional adjustment in the minia-
turization design. First, the bigger the relative area is, the
stronger the coupling will be. Thus, the radius r( of a circular
patch adjusts the miniaturization of the structure. Second, com-
pared with the traditional FSS structure, the dielectric of SC-FSS
will have a greater function, as its thickness /1 and permittivity
e, directly affect this interlayer coupling. The effects of the
above-mentioned factors on the miniaturization of SC-FSS are
described in Table II. It can be observed that the thinner the
dielectric thickness is, the higher miniaturization will be, which
is one of the very meaningful advantages of this miniaturized
method. Besides, higher permittivity ¢, will lead to a stronger
coupling. As a result, SC-FSS can achieve a very high degree of
miniaturization in theory. In addition to the angular stability, it is
also significant to solve the EMI problem of the chip and package
in a narrow space. Furthermore, besides the miniaturization, we
mainly solve the angular dispersion by eliminating the coupling
between the elements. Fig. 7 shows that the proposed SC-FSS
has good angular stability under different miniaturization levels

TABLE 11
EFFECTS OF THE STRUCTURAL PARAMETERS ON THE MINIATURIZATION OF
SC-FSS
Case (10 (nll110n) &r }.‘5332223 coll ia
1 22 02 22 192GHz  0.0641,
5 14 02 22 264GHz 00881,
3 3 02 22 166GHz 00551,
4 22 01 22 138GHz 00461,
5 22 03 22 232GHz 00774
6 22 02 33 160GHz  0.0531
7 22 02 65 114GHz  0.0381,
8 0.56GHz  0.0184,

Cases (D@)() show the effect of the radius of circular patch rq.
Cases (D@ (5) show the effect of the thickness of dielectric /q.
Cases (D(©®(7) show the effect of relative permittivity &,-.

Case proves that we can further miniaturize the
0.018% and even smaller by adjusting these parameters.

structure  size to

S,,, dB

Fig. 7. Angular response of the SC-FSS structure under different miniatur-
ization levels. n = P/, where the parameter “n” means the miniaturization
level, P is the unit cell size (8§ mm), and A is the wavelength of the corresponding
operating frequency.

for TE mode, which makes it possible to design the FSS structure
insensitive to the incident angle at a higher frequency.

III. DUAL-POLARIZATION BAND-STOP SC-FSS STRUCTURE
A. Structure Description and Operation Principle

In practical applications, due to the complex electromagnetic
environment, the designed SC-FSS structure is often required
to have good polarization stability. However, in general, the
angle problem is more prominent for TM mode, because the
vector components of the electric field will change accordingly,
as the incident angle increases. Consequently, how to solve this
problem and realize a dual-polarized stable structure insensitive
to the incident angle becomes a big challenge.

As analyzed in the previous study [4], the more miniaturized
the unit cell size, the better the angle stability. In order to solve
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Fig. 8.  Structure of the stopband SC-FSS for dual polarizations. (a) 3-D view.
(b) Top view. (c) Bottom view. Optimized geometric parameters are p = 4.3 mm,
ho = 0.254 mm, £,,= 6.5, rg = 1.02 mm, d;= 0.2 mm, r;= 0.2 mm, wg =
0.06 mm, wq = 0.12 mm, sg = 0.3 mm, s; = 0.2 mm, so = 0.26 mm, [y =
1.52 mm, [; = 1.28 mm, l5 = 1.18 mm, and I3 = 0.96 mm.

Fig. 9. Distributions of surface current and electric field at 2 GHz under
TE polarization incidence. (a) Electric field distributions. (b) Surface current
distributions.

the incident angle problem for TM mode, we design a more
compact SC-FSS structure, as shown in Fig. 8. In addition to
the strong coupling between different layers, the structure also
introduces the meandered inductance, which further improves
the miniaturization of the designed structure.

The red parts of the structure can control the incident y-
polarization waves, while the x-polarization waves are regulated
by the blue parts. The surface currents and electric field distri-
butions of the proposed SC-FSS array at 2 GHz for TE mode
are shown in Fig. 9. It can be observed that the electric field
is mainly concentrated between the red circular patches at this
time and the current is mainly distributed on the red strips. On
the other hand, they are mainly distributed on the blue parts for
the TM mode.
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Fig. 10. (a) Proposed ECM, where ZF is the equivalent impedance of the
FSS structure and Zs is the free-space impedance of the incident waves. (b)
Simulation results of ECM in comparison with those by CST.

The ECM of this structure is the same as the single-
polarization structure in Section II, as shown in Fig. 10(a).
Through the formulae (1)—(5), we can calculate the equivalent
capacitance C; = 1 pF and inductance L; = 6.35 nH.

The circuit simulation results obtained by the circuit simula-
tion software ADS are compared with the full-wave simulation
results, as shown in Fig. 10(b), where the simulation results of
CST and ADS agree with each other, which verifies that the
above-mentioned analysis is practicable. It should be noted that
the peak value is varying as the incident angle and polarization.
This is the result that the free-space impedance of the incident
waves Z, varies with Zy/cos(f) for TE mode, while it changes
to Zy-cos(f) for TM mode, where Zy = E/H = 377 Q)

Z.— 7

S — S mn 6

11 7.5 7. 6)
Zp- 7,

Iin = >——- 7
Zr + 2, @

From formulae (6) and (7), the reflection coefficients S1; at
the oblique incidence can be expressed as

1
S11 = —————,for TEmode ®)
1 142 7r (:Zc;s(e)
1
Si11 = — for TMmode. ©)
142 Zo cos(0)

For a certain frequency, Zr is a constant. For TE mode, the
reflection coefficient S;; will increase, while it decreases for TM
mode, which is consistent with the simulation results.

Furthermore, the transmission spectra of the proposed stop-
band SC-FSS structure under different polarizations and incident
angles are shown in Fig. 11. Obviously, when the incident angle
changes from 0° to 88°, the resonance frequencies of SC-FSS
remain at f; all the time for both TE and TM modes.

B. Implementation and Experimental Verification

Finally, the prototype is fabricated by the printed circuit board
(PCB) technology to verify the feasibility of the proposed struc-
ture, as shown in Fig. 12(b). It consists of 98 x 63 unit cells with
aboard size of 430 x 285 mm. It was measured by the free-space
method. The entire testing process is carried out in a microwave
anechoic chamber to reduce the EMI effects in the environment.
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Measured results of the proposed SC-FSS structure and the

comparison with those by CST and ECM. (a) and (c) TE mode. (b) and (d)
TM mode.

The experimental setup is shown in Fig. 12(a), where a pair of
horn Antennas HD-10180 and a vector network analyzer ZVA67
were employed for testing. For each incident angle, we measure
two sets of data separately. Data; is the environmental refer-
ence value measured without loading FSS, while Data, is the
measured value with loading FSS. The transmission coefficient
of the prototype, S21, is equal to Datas minus Data,. Fig. 13
shows the transmission responses under different incident angles
for TE and TM modes, respectively. The transmission zeros
are always stable at 2 GHz under the variety of incident angle
(0°=75°, step = 7.5°and 84°) for both TE and TM modes, which
is consistent with the results of ECM and full-wave simulation.
For the normal incidence, the stopband bandwidth of -10 dB is
over 1.28 GHz. As the free impedance of the incident waves
changes at the oblique incidence, the stopband bandwidth of TE
mode will enlarge with the increase of incident angles, while
the bandwidth narrows for TM mode. Furthermore, to further
confirm the superiority of the proposed method, a performance
comparison of previously angular stability and miniaturized FSS
designs with the proposed structure in this article is listed in
Table III. It is concluded that no work in the existing pieces
of literature has realized the performance that the resonance
frequency is insensitive to almost all incident angles for both
TE and TM modes, and the SC-FSS structure has the more
miniaturized unit cell in contrast with other similar works. As a
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TABLE III
CHARACTERISTICS OF DIFFERENT FSS DESIGNS

FSS Resonance Unit cell Angular Resonance frequency Max.
designs frequency stability deviation (%)
Mo UOOH 00gh T Iyt Bluedin sbow 4%
e wEm @ imaen
ol 33%H Coma 8 Iy Bivesmitabeut Le10
W dom Jamm e U T

result, it can be applied to solve the problem of EMI in a narrow
space with a large incident angle.

IV. CONCLUSION

The miniaturized concept of SC-FSS, which is insensitive to
almost all incident angles, is proposed in this article. First, we
introduce the concept and analyze the working principle of the
SC-FSS conceptual model. Then the advantages of SC-FSS in
miniaturization are discussed. Furthermore, in order to verify
this design concept, especially to solve the angle-sensitive prob-
lem for TM mode, a dual-polarized stopband SC-FSS structure
is designed and presented, whose transmission zeros are always
maintained at 2 GHz even when the angle changes to 84° for both
TE and TM modes in the measurement results. In conclusion, the
proposed SC-FSS is a good miniaturized method with excellent
angular stability, which can be well applied to the antenna
reflectors and complex EMI shielding in a narrow space.
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