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Stabilizing high-efficiency perovskite solar cells (PSCs) at operating conditions remains an unresolved issue ham-
pering its large-scale commercial deployment. Here, we report a star-shaped polymer to improve charge transport
and inhibit ion migration at the perovskite interface. The incorporation of multiple chemical anchor sites in the
star-shaped polymer branches strongly controls the crystallization of perovskite film with lower trap density and
higher carrier mobility and thus inhibits the nonradiative recombination and reduces the charge-transport loss.
Consequently, the modified inverted PSCs show an optimal power conversion efficiency of 22.1% and a very high
fill factor (FF) of 0.862, corresponding to 95.4% of the Shockley-Queisser limited FF (0.904) of PSCs with a 1.59-eV
bandgap. The modified devices exhibit excellent long-term operational and thermal stability at the maximum
power point for 1000 hours at 45°C under continuous one-sun illumination without any significant loss of efficiency.

INTRODUCTION

Hybrid organic-inorganic halide perovskites are attractive photo-
electric materials exhibiting the advantages of low cost (I) and ease
in manufacturing (2) while exhibiting strong panchromatic sunlight
absorption (3), long carrier diffusion lengths (4), and adjustable di-
rect bandgaps (5). The power conversion efficiencies (PCEs) of pe-
rovskite solar cells (PSCs) achieved within only a few years have
reached 25.5% (6-9) using the regular (n-i-p) structure. Unfortunate-
ly, the PCE of inverted (p-i-n) PSCs lags significantly behind that of
regular structured devices. Although the open-circuit voltage (V,.),
short-circuit current (Js.), and fill factor (FF) are highly correlated
and synergistically affect the PCE, most researchers have principally
dedicated their efforts to optimizing Vo and J rather than attempt-
ing to comprehend and optimize the FF value (10). In most cases, the
FF values of PSCs usually exhibit low values between 0.7 and 0.8, and
even those devices with certified 22.7% (11) and 23.3% (12), PCEs
show an FF value lower than 0.8. Recently, a higher FF value of 0.848
has been achieved, which likely played a determining role in reach-
ing a 25.2% PCE (7).

For FF optimization, low series resistances (R;) and large shunt
resistances (Ry) are usually required (13). The R, in a PSC can be
determined by ohmic elements, for example, the conductive base,
electron and hole transport layer (ETL and HTL, respectively), and
metal back contact (14). Increasing the conductivity and mobility of
the ETL and HTL will help to improve the FF in PSCs. To improve
the Ry, value, the leakage current caused by carrier recombination
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in the bulk and at interfaces should be minimized (15). Among var-
ious types of recombination, defect-induced recombination plays
amajor role in the reduction of the FF and V. (16). Until present,
many passivation methods have been proposed to reduce the defect
density, significantly boosting Ry, and reducing defect-induced re-
combination (17-19). Additives based on the Lewis acid-base theory
(20, 21) including solvents (22), ionic liquids (23, 24), small molecules
(25-27), and polymers (28, 29) are used to modify perovskite films
with various functional groups. When used as additives, the high vol-
atility and high diffusion coefficient of small molecules may make it
difficult to maintain the long-term stability of PSCs under extreme
conditions (30-33). For these reasons, several attempts have instead
been made to use polymers as additives (28, 29, 34). These polymers,
however, generally have a one-dimensional (1D) linear structure and
can only show a single passivation effect when they modify the sur-
face of perovskite films. Few researchers directly passivate perovskite
films through 3D polymers that have multiple branches and multi-
ple functional groups on each branch.

Here, we have designed a 3D star-shaped polyhedral oligomeric
silsesquioxane-poly(trifluoroethyl methacrylate)-b-poly(methyl
methacrylate) (PPP) polymer as a novel modulator to regulate pe-
rovskite film crystallization (Fig. 1A). The polyhedral oligomeric
silsesquioxane serving as a core in the star-shaped PPP material is
surrounded by eight branches, including poly(trifluoroethyl meth-
acrylate) and poly(methyl methacrylate) molecular chains. The core
is a type of organic-inorganic intramolecular hybrid material with
a highly symmetrical rigid Si—O—Si cubic cage skeleton, which can
offer the PPP material 3D structure stability (35). Poly(trifluoroethyl
methacrylate) is a type of special fluoropolymer that exhibits out-
standing hydrophobic and anti-adhesion properties (36). On the PPP
polymer branches, there are multiple chemical anchor sites includ-
ing carbonyl (C=0) and —CF3, which act as 3D skeleton templates to
passivate defects at the grain boundaries (GBs) and interfacial sur-
faces, inhibit nonradiative recombination and charge-transport loss,
and improve stabilities under moisture, thermal, and illumination
stress. As a result, the PPP-modified inverted devices obtain an op-
timal 22.1% efficiency and an astoundingly high FF value of 0.862.
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Fig. 1. Interactions between the PPP polymer and perovskite. (A) Structural formula of the PPP polymer. (B) Schematic diagram of the interaction between the PPP
polymer (partial 3D structure) and perovskite, including chelation between C=0 and Pb and hydrogen bonding between —CF3 and FA* and MA*. (C) FTIR spectra of the
PPP polymer, Pbl,, and PPP-Pbl,. (D) Fingerprint region of C=0. (E and F) XPS spectra of Pb 4fand N 1s in control and PPP-modified perovskite films. a.u., arbitrary units.
(G) 'H-NMR spectra of FAl and FAI-PPP mixture. (H) "H-NMR spectra of MABr and MABr-PPP mixture.

The nonencapsulated modified device exhibits a significantly en-
hanced environmental stability with retaining of more than 93% of
the initial efficiency after 6000 hours of exposure to ambient envi-
ronment atmosphere [40% relative humidity (RH), 25°C]. The en-
capsulated modified device exhibits excellent operational stability
with almost no change in efficiency after 1000 hours of maximum
power point tracking under one-sun illumination at 45°C, as well as
very good thermal stability with 91% of the initial efficiency retained
under continuous one-sun illumination at 75°C for 1000 hours.

RESULTS

Structural and morphology characterizations

The Fourier transform infrared (FTIR) spectrum (fig. S1), 'H nuclear
magnetic resonance (*H-NMR) spectrum (fig. S2), and gel perme-
ation chromatography (GPC) (fig. S3) results confirmed the struc-
ture of the as-prepared PPP polymer. The PPP polymers used as a
novel additive have been introduced into the perovskite film via a
chlorobenzene antisolvent. The interaction between the PPP polymer
and CsMAFA (MA, methylamine cation; FA, formamidinium cation)-
based perovskite is shown in Fig. 1B, which has been investigated
by combining FTIR, x-ray photoelectron spectroscopy (XPS), and
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"H-NMR. First, the C=0 bond of the PPP polymer chelation with
noncoordinating Pb** is observed. As shown in Fig. 1 (C and D), the
stretching vibration of the C=0 bond of the PPP polymer appears at
1741 cm ™! and shifts to 1731 cm ™" when it interacts with Pbl,. The
shift in the C=0 stretching vibration frequency of the PPP polymer
to a lower wave number arises from the electron delocalization from
C=0 when an intermediate PPP-PbI, adduct is formed, which dem-
onstrates a strong interaction between PbI, and C=O in the PPP poly-
mer. From the XPS spectra of the PPP-modified perovskite film (fig.
S4), we detect C, O, F, and Si on the top surface, and the XPS spectra
of Cs 3d, Br 3d, 1 3d, and Pb 4f shift after the incorporation of the
PPP polymer. This phenomenon indicates that there is an interac-
tion between the PPP polymer and perovskite. From the Pb 4f XPS
spectra (Fig. 1E), there are two main peaks at 138.4 and 143.3 eV,
corresponding to Pb 4f/; and Pb 4fs,,, respectively. In addition, the
two small peaks at 136.7 and 141.6 eV are ascribed to the existence
of metallic Pb in the control film. The metallic Pb peaks disappear
for the PPP-modified perovskite film, showing that the PPP polymer
can prevent the formation of metallic Pb.

In addition, the strong hydrogen bonding between the —CF;
group of the PPP polymer and FA* and MA" in the perovskite film
has been investigated. After the CsSMAFA perovskite was modified
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by the PPP polymer, the XPS spectra of the N 1s orbital peak ob-
tained for the CsMAFA perovskite film show a significant deviation
(Fig. 1F). Furthermore, the N—H stretching vibration in the FTIR
spectra of FAI and MABr perovskites shifts to lower wave number,
which indicates the interaction between the N—H of the perovskite
and —CF; functional group in the PPP polymer (fig. S5) (37). The
"H-NMR spectra are further used to demonstrate the existence of
hydrogen bonds. The electronegativity of the fluorine atom is stron-
ger than that of oxygen in the PPP polymer, so it is easy to associate
with H atoms to form F---H hydrogen bonds. Once the perovskite
film is modified with the PPP polymer, N—H---F hydrogen bonds
are readily formed with N—H in FA" and MA™ (38). We compare the
"H-NMR spectra of FAI and FAI-PPP-based dimethyl sulfoxide-d6
(CD3SOCD3) and chloroform-d; (CDCl3) mixed solvent (Fig. 1G).
After adding the PPP polymer, the chemical shift (§) values of the
H atoms in the NH, and =NH," show a clear shift. Furthermore, we
also compare the 'H-NMR spectra of MABr and MABr-PPP solu-
tions. Figure 1H shows that the § value of H in NH3" moves to the
lower field direction by approximately 0.06 parts per million (ppm;
from 7.63 to 7.69 ppm) after the introduction of the PPP polymer.
These findings signify that the F atoms in the PPP polymer have
formed a hydrogen bond with the H atoms in the NH, and =NH,"
of the FAI perovskite and NH;" of the MABr perovskite.

CsMAFA

: Amorphous

We now explore the effects of the PPP polymer on the morphol-
ogy and quality of perovskite films. The top-view scanning electron
microscopy (SEM) and cross-sectional SEM images of the control
and PPP-modified films are presented in Fig. 2 (A to D). Compared
to the control, the PPP-modified perovskite shows a densely packed
film with a larger grain size. Figure S6 shows the corresponding grain
size distribution. The average grain size of the control film is approx-
imately 260 nm, while that of the PPP-modified perovskite film is
approximately 350 nm. Moreover, the cross-sectional SEM image
of the control shows an irregular vertical arrangement and obvious
GBs, while the PPP-modified perovskite crystals are well arranged
along the vertical direction and GBs are not readily observed. These
results demonstrate that the PPP polymer promotes perovskite crys-
tallization to obtain a high-quality film. Transmission electron mi-
croscopy (TEM) is used to further study the PPP-modified perovskite
film. As shown in Fig. 2 (E and F), the perovskite material is coated
with a very thin amorphous phase of PPP molecules, but a good crys-
tal structure is attested by the exposed region. The interplanar spacing
of the perovskite material is confirmed to be 0.63 nm, which corre-
sponds to the (100) plane of the CsMAFA crystal tetragonal phase
(Fig. 2F). The 3D structure of the PPP polymer can bridge grains and
constitute 3D skeleton templates to immobilize perovskite grains. The
x-ray diffraction (XRD) patterns illustrate that the PPP molecules
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Fig. 2. Morphology and structural properties of perovskite films. (A and B) Top-view SEM images of the control and PPP-modified perovskite films. (C and D) Cross-
sectional SEM images of the control and PPP-modified perovskite films. (E) High-resolution TEM image of PPP-modified perovskite crystals. (F) Enlarged TEM image of the

red box in (E). (G) XRD patterns of the control and PPP-modified perovskite films.
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are not incorporated into the perovskite crystal lattice. The full width
at half maximum of the (100) peak of the PPP-modified perovskite
film is smaller than that of the control (fig. S7). Compared to the
control, the PPP-modified film shows stronger intensities of the
CsMAFA crystal but a weaker intensity of the Pbl, peaks in the XRD
pattern, suggesting a larger grain size and higher crystallinity (Fig. 2G).
In the PPP-modified perovskite films, enhanced absorption is also
observed, which is attributed to increased crystallinity (fig. S8). Be-
cause the 3D PPP polymer branches have multiple chemical anchor
sites including C=0 and —CF;, the strong interaction of the C=0
bond of the PPP polymer with Pbl, and the hydrogen bonding in-
teraction between the PPP polymer and FA" and MA" reduce the
content of unreacted Pbl,, regulating the morphology and thereby
improving the quality of the perovskite film. We also combined
scanning TEM imaging, energy-dispersive x-ray mapping (fig. S9),
and time-of-flight secondary ion mass spectroscopy (ToF-SIMS)
depth profile (fig. S10) to prove that PPP polymers are distributed in
the bulk of the perovskite film.
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Photovoltaic performances

We characterized the photovoltaic performance of the control and the
PPP-modified devices using the inverted device structure ITO/NiO,
(20 nm)/pristine perovskite or PPP-modified perovskite (750 nm)/
PCBM+C60 (45 nm)/BCP (10 nm)/Cr (5 nm)/Au (100 nm) (where
ITO represents indium tin oxide, PCBM represents [6,6]-phenyl-
C61-butyric acid methyl ester, and BCP represents 2,9-dimethyl-4,7-
diphenyl-1,10-phenanthroline; Fig. 3A). Statistical distributions,
optimum current density-voltage (J-V) curves, and photovoltaic pa-
rameters of PSCs as a function of PPP concentration are presented
in figs. S11 and S12 and table S1. The highest PCE of the control de-
vice is 18.62% (18.08%), with a V. value 0of 1.082 (1.078) V, a J,. value
of 22.32 (22.20) mA cm ™2, and a FF value of 0.770 (0.755), as ob-
tained from the reverse (forward) scan. The optimal concentration of
the PPP polymer is 0.1 mg ml™". The PCE of the PPP-modified device
increased t0 22.11% (21.91%), with a V. value 0of 1.131 (1.131) V, a
J. value of 23.24 (23.14) mA cm ™2, and a FF value of 0.841 (0.837),
obtained from the reverse (forward) scan (Fig. 3B and Table 1) with
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Fig. 3. Photovoltaic performance. (A) Device architecture of the PPP-modified PSCs. (B) Champion J-V curves obtained in forward and reverse scans of the control and
PPP-modified devices. (C) Stabilized photocurrent and SPO at 0.91 and 0.97 V for the control and PPP-modified devices, respectively. (D) EQE spectra and integrated
current of the control and PPP-modified devices. (E) PCE histogram of 20 PSCs of the control and PPP-modified devices. (F) Collection of FFs versus PCEs, reported for in-

verted PSCs.
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Table 1. Champion photovoltaic parameters of the inverted PSCs measured in different scan directions under standard AM 1.5 illumination

(100 MW cm™2).

Device Scanning direction Voc (V) Jc (MAcm™?) FF PCE (%) Hysteresis factor®
Forward 1.078 22.20 0.755 18.08
Reverse 1.082 22.32 0.770 18.62

PPP-modified B L Lo S .. ... W 0.90
Reverse 1.131 23.24 0.841 22.11

PCEreverse - PCEforward

* Hysteresis factor = PCE
reverse

a scan rate of 0.05 V s™'. We calculate the hysteresis factors for the
control and PPP-modified devices to be 2.9 and 0.9%, respectively,
which show that the PPP-modified device exhibits a very small hys-
teresis. We also measured the device PCE at other scan rates including
0.25and 0.01 Vst (fig. S13 and table S2). The PPP-modified device
still exhibits negligible hysteresis. Moreover, the PPP-modified de-
vice shows higher and more rapidly rising photocurrents than the
control device. The steady-state power output (SPO) stabilizes at ap-
proximately 22.03% (Fig. 3C). The J,. values derived from integrat-
ing the external quantum efficiency (EQE) spectra over the standard
global AM 1.5 solar emission are 21.66 and 22.78 mA cm ™ for the
control and PPP-modified device, respectively, which agree with
the Js. values measured from the J-V curve (Fig. 3D). The histogram
of the PCE with 20 PPP-modified PSCs shows excellent reproduc-
ibility, which confirms that incorporating PPP improves the perform-
ance of PSCs (Fig. 3E). One of the devices based on PPP-modified
PSCs with negligible hysteresis achieves a notably high FF value of
0.862 (see fig. S14), which approaches the Shockley-Queisser (S-Q)
limit of 0.904 V for a PSC with 1.59 eV bandgap (39). Both the 22.1%
PCE and 0.86 FF are among the highest values recorded for inverted
PSCs (Fig. 3F and table S3) (8, 24, 40-50). We also introduce the
PPP polymer into other perovskite components such as MAPbI;,
MA5FA5Pbl;. The PPP-modified devices also show improved
PCE and high FF (fig. S15), indicating that the incorporation of
star-shaped polymer into perovskite is an effective and univer-
sal strategy.

Origin of the improved performance and device physics

We tested the steady-state photoluminescence (SSPL) and time-resolved
photoluminescence (TRPL) to analyze the carrier recombination dy-
namics as presented in Fig. 4 (A and B) and listed the corresponding
data in Table 2. The SSPL intensity of the PPP-modified perovskite
film exhibits an obvious enhancement compared to that of the con-
trol. Concurrently, the PL peak position of the PPP-modified film
displays a blue shift from 780 (control device) to 775 nm. These re-
sults provide strong evidence that the PPP molecules can effectively
mitigate the trap density and act to passivate GBs and surface de-
fects, due to their strong interaction with perovskite as supported
by the XPS and FTIR results. We further investigated the origin
of the improved photovoltaic performance by performing TRPL
measurements to study the carrier transport and recombination
at the perovskite layer (Fig. 4B). To evaluate the TRPL data, we
applied a kinetic model described in our previous study (51). For
both films, we observe two features: a rapid decay within the first
50 ns followed by an almost monoexponentially slower decay. The
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fast decay at early times has been attributed to initial carrier trap-
ping, whereas hole transfer, the following slower decay, is caused
by nonradiative recombination (51). Considering bulk recombi-
nation, we derive for the target device a first-order rate constant
for nonradiative carrier recombination of k; = 5.3 x 10° s} corre-
sponding to a lifetime of T = 941.7 ns, while the respective values
for the control film are k; = 1.61 x 10° s and © = 310.8 ns. This
indicates that the PPP modification of the perovskite film sup-
presses nonradiative carrier recombination, thus improving the
photovoltaic metrics. Note, however, that surface recombination of
charge carriers also yields a first-order rate law (51), rendering it
difficult to distinguish between surface and bulk recombination by
this kinetic analysis.

To quantitatively investigate the PPP polymer passivation effects
in perovskites, we characterize the trap density and carrier mobility
by measuring the space charge-limited current. The PPP-modified
devices show lower electron and hole trap densities than the control
devices, which most likely results from the passivation effect of the
surface or interface defects by the PPP polymer (Table 2 and fig.
S16). The calculated electron mobility of the PPP-modified device is
increased to 14.76 cm” V™' s™! compared with that of the control
device (1.69 cm? V™! s7!). The hole mobility also increases from
4.16 cm* V™' s7! for the control device to 15.94 cm” V™' s7* for the
PPP-modified device. Moreover, Mott-Schottky analyses were under-
taken to evaluate the built-in potential (V4;) (Fig. 4C). The value
of Vy; of the PPP-modified PSC determined is 1.10 V, which is larger
than that of the control device (0.85 V). Thus, the PPP-modified de-
vice shows higher carrier mobility, more balanced carrier transpor-
tation, and a higher V3, value, demonstrating the substantial benefits
from modifying perovskite by PPP.

We further determined the effect of PPP on the ideality factor of our
PSCs. The carrier recombination mechanism can be investigated by
studying the current and voltage dependencies under different light in-
tensities for the control and PPP-modified devices (fig. S17). The slope
of the kg T/q unit determines whether V,, loss is predominated by trap-
induced nonradiative recombination (where kg is the Boltzmann
constant, T is the thermodynamic temperature, and g is the electron
charge). The slope of V. versus light intensity reduces from 1.31 kg T/q
(control) to 1.08 kgT/q (PPP-modified), suggesting a reduction of
trap-induced recombination under open-circuit conditions. Because
of the power law Ji. o< I* (where a is an exponential factor and I is
the light intensity), the dependence of i on light intensity can be
identified. The calculated a values are 0.957 and 0.998 for the con-
trol and PPP-modified PSCs, respectively, illustrating a slight de-
crease in bimolecular recombination under short-circuit conditions.
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Fig. 4. Effects of PPP modification on the electrical effects of perovskite films. (A) SSPL and (B) TRPL spectra of the control and PPP-modified perovskite films. (C) 1/C?
versus applied voltage plots (Mott-Schottky) in the control and PPP-modified PSCs. (D) V,. plotted against the logarithm of Js in the device. (E) Dark J-V curves of
the control and PPP-modified PSCs. (F) The device FF S-Q limit consists of charge-transport loss (blue area) and nonradiative loss (pink area). The deep yellow and olive
green circles represent the measured FF and the maximum FF without charge-transport loss, respectively.

Furthermore, the ideality factor njp is quantized from the slope of
the V. versus Ig (Js) plot based on Eq. 1

Voc =

nIDkBT1n<JSC> (1)

q Jo

where J is the saturation current density at reverse bias. The calcu-
lated nip value of the control device is 1.37. The calculated nip value
of the PPP-modified device decreased significantly to 1.08 (Fig. 4D).
This value is very low, indicating that the trap-induced recombina-
tion is significantly suppressed.

We also study the energy band structure of the PPP-modified
PSC (figs. S18 and S19). The calculated Ep values of the control and
PPP-modified devices are 4.61 and 4.49 eV, respectively. A signifi-
cant upshift in the Er level of the PPP-modified film in devices at-
tests to its enhanced properties as an n-type film (8). The more the
properties of a perovskite film approach n-type, the more substan-
tially the electron traps are filled, which can result in a further re-
duction in the reorganization events caused by the traps. As a result,
the PPP-modified perovskite layer has a better band alignment with
the ETL and HTL, which is beneficial toward V,. improvement, R
decrease, and charge transfer.

To explain the improvement in FF, we measure the dark current
curve because the FF is a parameter that is strongly influenced by
resistance losses (Fig. 4E). The reverse saturation current and turn-
on voltage of the PPP-modified device are reduced compared with
that of the control device. The R, value for the PPP-modified device
decreases from 6.31 (control device) to 1.30 ohm-cm?, which we at-
tribute to the improved quality of the perovskite film and better band
alignment of the device. On the other hand, the Ry, values for the
PPP-modified and control device are 15,220 and 3003 ohm-cm?, re-
spectively. The increase in Ry, value is mainly due to the inhibition
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of current leakage induced by surface defects (the R and Ry}, values
are obtained from the V,./J, ratio and the dark J-V curve). Further-
more, nonradiative carrier recombination and charge-transport
losses are the two main reasons reducing the FF value below the S-Q
limit (52). Neglecting charge-transport losses, we derive the maxi-
mum FF value (FFy,y) from Eq. 2 (53)

- . . \%4
PP = 2o 000 t072) iy, = €
ocC
FF, = FFpau(l - 1.1 r§ 3
s — max( - 1. rs)"’g ( )
Voc+0.72 FF,
FF = FF(1--—= rsh“) (4)

VOC

where 5 and rg, are the normalized resistances, given by rs = J
Ry/Voc and rgh = Jsc Ren/ Voo, respectively. As shown in Fig. 4F, FFpax
values are 0.859 and 0.886 for the control and PPP-modified devices,
respectively. The nonradiative loss for the PPP-modified device is
suppressed because the PPP polymer passivates defects in the perov-
skite film. If both the nonradiative loss and charge-transport loss
are considered, the empirical Egs. 3 and 4 should be adopted (15),
and we calculate that the FF values of the control and PPP-modified
devices are 0.730 and 0.858, respectively. The calculated FF value
agrees with the measured FF value, the difference being less than
6%. Compared to the control device, the charge-transport loss in the
PPP-modified device is also clearly reduced owing to the increased
carrier mobility, as shown above. These results confirmed that the
3D PPP polymer not only inhibits nonradiative recombination but
also improves charge transport in the device.
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Table 2. Comparison of electrical parameters. The trap density and charge carrier mobilities obtained for electron-only and hole-only devices with control
and PPP-modified PSCs and series resistance (R;), shunt resistance (Rsh), ideality factor (njp), and nonradiative carrier recombination lifetime (z) for the control

and PPP-modified PSCs.

Trap density (cm'3) Mobility (cm2 v’ s'1)

R

Device Electron Hole Electron Hole Hnfite (ohm-cm?) (ohms-’émz) Mo I
Control 132x10'°  485x10" 1.69 4.16 246 6.31 3,003 137 3108
PPP-modified ~ 3.87x10"  3.70x10" 14.76 15.94 1.08 1.30 15,220 1.08 9417

Enhanced device stability A

First, we study the environmental stability of the device. The control W 10 Ernviromental stabily

perovskite film shows an enhanced degradation compared with the 9 1o

PPP-modified perovskite film after aging for 240 hours at 85°C and ? o

40% ambient RH (figs. 520 and S21). The presence of GBs is the main s R ified

source of perovskite film decomposition in humid environment since g%

moisture penetrates the perovskite crystal through the GBs, accelerat- Z s Under dark 40% RH and T = 25°C

ing its destruction (31). The enhanced environmental stability can be s o P Py e v povet

attributed to the increased hydrophobicity of the perovskite film sur- B Time (hours)

face after the introduction of the PPP polymer (fig. S22). We also study
the long-term stability of PSCs without encapsulation. When the de-
vice is stored in a 40% RH air environment for 6000 hours, the normal-
ized PCE of the modified device is stable at exhibiting approximately
93% of its original value while the control device declines to ~73% of its
original PCE (Fig. 5A). The relatively stable PCE of the PPP-modified
perovskite film indicates that it has fewer internal defects than the con-
trol device’s film, mainly due to the protection of the perovskite crystals
by the naturally hydrophobic PPP polymer that form a core-shell struc-
ture (Fig. 2E), providing a strong resistance to humidity.

The PPP passivation treatment also improves the photo-, thermal,
and operational stability of the PSCs. The long-term operational
stability of the encapsulated CsMAFA-based PSCs with and without
PPP incorporation was investigated with maximum power point
tracking under one-sun illumination (45°C, in air, 100 mW/cm?) as
depicted in Fig. 5B. The SPO of the control device only retains ~36%
after 500 hours of operation, while the SPO of the PPP-modified de-
vice is almost unchanged after continuous operation for 1000 hours.
In addition, the PCE evaluation of encapsulated devices aged under
one-sun illumination at 75°C has been recorded and is exhibited in
Fig. 5C. The control device with Cr interlayer maintains approxi-
mately 71% of the initial PCE for 1000 hours, whereas the control
device without Cr interlayer retains only approximately 30% for
500 hours. Thus, the result demonstrates that the Cr interlayer has a
positive effect on the long-term stability. Cr effectively shields gold
electrode contact from detrimental reactions with oxidizing and
halide-forming iodide species (54). When there is a Cr interlayer, the
rate of reduction in stability witnessed under such harsh conditions is
much slower for the PPP-modified device in comparison to the con-
trol device. Specific points of data are shown in fig. S23 for the most
stable and highest PCE device. The PPP-modified device impres-
sively maintains 91% of its initial efficiency of ~22% after 1000 hours,
whereas the control device retains only 71% of its initial efficiency of
~18%. Our PPP-modified PSC compares favorably with other reported
results (table S4). When there is no Cr interlayer, the PPP-modified
device still maintains 85% of its initial efficiency after 1000 hours.

To unveil the mechanism of the enhanced stability, we monitor the
depth profiles of several key species in the control and PPP-modified
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Fig. 5. Stability. (A) Air stability for the nonencapsulated control and PPP-modified
devices (the average PCE is obtained from 10 devices of each type of device, and
the error bars represent the SD of the devices). (B) Maximum power point (MPP)
tracking of encapsulated PSCs with and without PPP-modified in air under one-sun
illumination at 45°C. (C) Thermal stability of encapsulated control and PPP-modified
devices. The devices were illuminated under full-spectrum sunlight (no UV filter)
at 75°Cin air under open-circuit conditions, and their output photovoltaic power
was determined by recording J-V curves at regular time intervals. The plotted
data points present averages for the 10 cells. ToF-SIMS depth profiles of (D) con-
trol and (E) PPP-modified electrodeless PSC devices before (solid line) and after
(short dashed line) thermal aging at 75°C and full-spectrum sunlight for 300 hours
in the N, atmosphere.
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devices before and after thermal aging at 75°C and full-spectrum
sunlight for 300 hours under a N, atmosphere by ToF-SIMS (Fig. 5,
D andE) (55, 56). Cq_ is selected for following the evolution of the
PCBM+Cgo ETL, CN™ as representing the MA* and FA™; CN,H,I™ as
representing the FAL I, Pbl,, and Br™ for the CsMAFA perovskite;
80~ and F~ for the PPP polymer; NiO, " for the NiO,; and InO, " for the
ITO. Figure 5D shows that the diffusion of CN~, CN,H,I", I, PbL, ", and
Br™ found in the perovskite to the NiO, HTL is obvious after aging of
the control electrodeless PSC device, resulting in the rapid decomposi-
tion of the perovskite. In contrast, the outward diffusion of I" and Br~
ion and all ionic groups from the perovskite is largely reduced for the
PPP-modified electrodeless PSC device (Fig. 5E). The strong hydrogen
bonding of F--H—N between the —CF; radical of the PPP polymer and
FA" and MA" can restrain FA" and MAY, and the C=0 of the PPP
polymer has strong chelation with Pb to immobilize Pb ion or ionic
groups; thus, the PPP-modified device exhibits a better shielding effect
compared with the control device. In addition, the thermogravimetric
analysis (TGA) also manifests that the PPP-modified perovskite has a
better thermal stability than the control perovskite (fig. S24). Thus, the
PPP polymer inhibits ion migration in the perovskite film and thus
improves the long-term illumination and thermal stability of PSCs.

DISCUSSION

In summary, a 3D star-shaped multifunctional PPP polymer has been
designed to modify the perovskite film used in an inverted PSC device.
The PPP molecule acts as a 3D skeleton template to control crystalliza-
tion and to passivate defects at GBs and the surface, as well as to reduce
nonradiative recombination, charge-transport losses, and ion migra-
tion. Consequently, the PPP-modified inverted PSC obtains an opti-
mal 22.1% efficiency and a very high FF value of 0.862. We also used
a modified detailed balance model (57) to confirm that the loss of FF
(0.862) in the PPP-modified device with reference to its S-Q limit
(0.904) is predominantly caused by the defect-induced recombination
rather than by R, and Ry, (as detailed in fig. S25 and table S5). If non-
radiative carrier recombination was controlled by the Shockley-Read-
Hall bulk mechanism, the dominating factor V. that drops from its
S-Q limiting value of 1.32 V to the observed values of 1.10 V would
correspond to an FF value of 0.820, which is below the measured value
of 0.862. Consequently, surface recombination is likely to be the dom-
inant recombination mechanism in the PPP-modified device. Thus, it
appears feasible to further boost the FF close to its S-Q limit of 0.904 by
passivating defects in interfaces. Regarding the stability, the modified
device exhibits a significant enhancement in ambient air, retaining
more than 93% of its initial efficiency after 6000 hours of exposure to
air with 40% RH. The encapsulated device with PPP modification like-
wise exhibits a remarkable improvement of the operational and ther-
mal stability, operating at maximum power point for 1000 hours
under continuous one-sun illumination at 45°C, without efficiency
loss. Thus, introducing the star-shaped and plurifunctional molecule
in the perovskite films greatly improves its performance in particular
in inverted PSC configuration, opening a new direction for advance-
ments in the practical deployment of these solar cells.

MATERIALS AND METHODS

Materials

Nickel nitrate hexahydrate [Ni(NO3),-6H,0, 99.999%], chloroben-
zene (CB; 99.8%), anhydrous dimethyl sulfoxide (DMSO; 99.8%), and
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N,N-dimethylformamide (DMF; 99.8%) were purchased from Sigma-
Aldrich. All photovoltaic materials were purchased from Xi’an
Polymer Light Technology Corp. and did not require further puri-
fication. 3-Chloropropyltrimethoxysilane, pentamethyldiethylene-
triamine (PMDETA), trifluoroethyl methacrylate (TFEMA), methyl
methacrylate (MMA), and copper (I) chloride (CuCl) were purchased
from Aladdin.

Materials synthesis

The synthesis process of the PPP polymer [weight-average molecular
weight (Mw ~ 1.47 x 10°)] was divided into two steps. (i) For the
synthesis of octa(y-chloropropyl) silsesquioxane [POSS-(Cl)g], con-
centrated hydrochloric acid (8 ml), 3-chloropropyltrimethoxysilane
(10 ml), and methanol (200 ml) were mixed in a 500-ml round-
bottomed flask and then quickly stirred for 5 days in a 40°C oil bath
to complete hydrolysis. The obtained product was washed multiple
times with methanol and dried under vacuum to yield a white pow-
der. (ii) For the synthesis of PPP polymer, the synthesis procedures
were carried out using POSS-(Cl)g as radical initiator in a one-pot,
two-step atom transfer radical polymerization process. In this pro-
cess, the flask was continuously flowed with dry N, to remove O».
Then, POSS-(Cl)s (0.20 g), toluene (20 ml), TFEMA (20 ml), PMDETA
(0.12 ml), and CuCl (0.02 g) were mixed in the flask. The flask was
putinto an oil bath equipped with magnetic stirring bar at 110°C. Af-
ter the reaction proceeded for 24 hours, the same volume of the
MMA monomer was added into the flask, and the reaction was con-
tinued for 24 hours. After 48 hours, the flask was cooled in ice water to
terminate the polymerization reaction. The mixture was then poured
into tetrahydrofuran for dilution, filtered through an alumina col-
umn to remove the catalyst, and then poured into a tenfold methanol-
water mixed solvent. After being filtered and dried under a reduced
pressure at 50°C for 12 hours, the final product PPP polymer was
obtained. The synthesis process of this molecule is not complicated
and can be prepared on a large scale.

Nickel oxide nanoparticles were synthesized according to a pre-
vious method (58). The CsMAFA triple-cation perovskite precursor
solution was prepared by mixing lead iodide (PbIy; 1.30 M), cesium
iodide (CsI; 0.07 M), lead bromide (PbBr5; 0.21 M), methylammo-
nium bromide (MABr; 0.21 M), and formamidine iodide (FAIL; 1.19 M)
in a mixed anhydrous solvent of DMF/DMSO (4/1, v/v) and was
stirred overnight (59).

Inverted solar cell fabrication (p-i-n)

ITO glasses were washed twice with ethanol in an ultrasonic bath
for 15 min. NiO, (20 mg ml™ in H,0) was spin-coated on dry and
ultraviolet (UV)-treated ITO at 2000 rpm for 40 s and then heated at
100°C for 10 min. The thickness of the NiO, film was approximately
20 nm. The coated ITO was then moved to a glove box. The perovskite
solution was spin-coated on the NiO, HTL according to a procedure
where the spin-coating speed and duration were increased from
1000 rpm for 10 s to 6000 rpm for 30 s. A total of 110 pl of the PPP
polymer with various concentrations (0, 0.04, 0.1, 0.6, and 1.0 mg ml™")
of the CB antisolvent was deposited for 15 s before the end of the
procedure, and then the perovskite solution was annealed at 100°C for
20 min to obtain the bright perovskite film with a thickness of 750 nm.
After that, 20 mg of PCBM (99% purity) and 5 mg of fullerene (C60,
99.5% purity) were dissolved in 1 ml of CB and spin-coated on the
perovskite film at 3000 rpm for 30 s, and then the ETL films were
annealed on a 60°C heating stage for 10 min. The thickness of the
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ETL is approximately 45 nm. After cooling to room temperature, the
BCP solution (0.5 mg ml ™" in isopropanol) was spin-coated at 5800 rpm
for 30 s. Last, the fabrication of the devices was accomplished by
thermally evaporating chromium (Cr; 5 nm) and gold (Au; 100 nm)
electrodes under a vacuum of 2 x 10~ mbar (0.1 cm? effective area).

Solar cell characterization

The contact angles were obtained by a DSA100 instrument (KRUSS,
Germany). The SEM images of the perovskite films and cross-sectional
devices were obtained using a FEI Helios G4 CX system. The TEM
images were obtained with a FEI Talos F200X microscope operated
with a 200-kV electron gun. The XRD patterns of the perovskite
films were gained by Cu Ko radiation from a PANAlyticalX'pert PRO
diffractometer equipped with a diffracted beam monochromator.
The XPS measurements were performed on a Kratos Axis Supra
spectrometer. The ultraviolet photoelectron spectroscopy (UPS) of
the perovskite films was obtained by a Shimadzu Kratos photoelec-
tron spectrometer with a nonmonochromatic He Ia photon source
(hv = 21.22 eV). The J-V curves of the PSCs were obtained under
AM 1.5 G (100 mW cm>) solar illumination with a Newport solar
simulator, and the scan rate corresponding to the curve was 0.05 Vs ™.
The EQE was obtained with a Newport system (1600 W) using mono-
chromatic incident light in director current mode (60). The SSPL and
TRPL spectra were obtained by an Edinburgh Instruments FLS980
fluorescence spectrometer. The absorption of the thin films was ob-
tained using a PerkinElmer Lambda 35 UV-vis spectrophotometer.
Mott-Schottky analyses were carried out on an electrochemical work-
station (Chenhua 760) in a voltage range of 0 to 1.5 V under dark
conditions. The FTIR spectra were measured on a Jasco FTIR-6100
spectrometer in a wavelength range of 4000 to 650 cm ™. The "H-NMR
measurements were performed by a Bruker AVANCE-300 in-
strument. TGA was performed by a METTLER TGA/DSC 3" analyzer.
GPC was performed with a Waters 1515 system, and the selected
solvent was tetrahydrofuran. The ToF-SIMS was measured by a
ToF-SIMS 5-100 instrument (ION-TOF GmbH, Germany). The depth
profiling was obtained through a 10-keV Ar-cluster sputtering beam
raster of 300 um by 300 pum area.

Stability test

The moisture stability measurements of the pristine and PPP-modified
perovskite films were performed at 40% RH and 85°C. The mois-
ture stability measurements of the nonencapsulated solar cells were
implemented in 40% RH and 25°C under dark condition. The PCEs
of the devices were periodically obtained under AM 1.5 G simulated
sunlight illumination in ambient air. The complete PSCs could be
encapsulated in a N glove box with a cover glass and UV adhesive
(LT-U001, Lumtec). The operational stability of the encapsulated
cells was measured at 45°C under a white light-emitting diode lamp
with a 16-channel, thin-film photovoltaic maximum power point
tracking test system (YH-VMPP-16). The photo- and thermal
stability of the encapsulated devices were measured by using the
Newport solar simulator under open-circuit conditions. The UV
filter was not used during the aging process. For J-V characterization,
the devices were taken out of the aging chamber and then cooled and
tested at different time intervals.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/28/eabg0633/DC1
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